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Table 1 Performance of different steganography methods on different image datasets

BT/ B UG | B /R R P (R

FEERY PSNR/dB 1 SSIM 1 APD | RMSE |
UDH 44.68 | 42.02 0.8913 | 0.9649 2.382.15 443323
HiNet 44.86 | 44.35 0.9692 | 0.9797 1.000.88 236]1.28
DeepMIH 4372 | 44.51 0.9895 | 0.9920 221]1.76 6.82]2.54
_ DAH-Net 36.59 | 40.72 0.9896 | 0.9896 1.72 | 1.54 2.7911.98
Divzk iSCMIS 45.78 | 42.53 0.9924 | 0.9858 1.62]1.98 2.422.93
PUSNet 38.15|36.88 0.9792 | 0.8363 2.30|8.75 3.33]11.95
U-INR 38.3237.11 0.9890 | 0.9851 2.17]2.84 2.723.86
AR 46.69 | 51.15 0.9992 | 1.0000 0.270.20 0.60 | 0.50
UDH 38.01|34.75 0.8988 10.9175 3.794.82 4.65|7.79
HiNet 36.55|47.06 0.9582 | 0.9561 0.811.82 3.692.78
DeepMIH 40.30 | 45.31 0.982110.9512 2.832.83 3.883.53
DAH-Net 35.59139.51 0.9856 | 0.9792 2.9612.73 3.84(2.67
coco iSCMIS 41.53 37.48 0.9818 | 0.9664 2.53]3.74 3.78|5.48
PUSNet 39.09 | 36.96 0.97720.8211 2.018.71 2.96 | 12.14
U-INR 39.70 | 37.53 0.9889 | 0.9873 1.55]2.73 2.393.41
A 41.86 | 51.80 0.9973 | 1.0000 0.96 | 0.26 1.44 | 0.65
UDH 43.87(32.53 0.9018 | 0.9034 3.81]3.56 4.66|8.22
HiNet 45.95|47.07 0.9528 1 0.9473 2.181.95 3.6312.86
DeepMIH 43.29 | 45.38 0.9870 | 0.9452 2.18]2.72 2.81]3.54
DAH-Net 39.93137.31 0.98570.9791 2.982.63 3.783.20
ImageNet
iSCMIS 41.64|37.83 0.9818 | 0.9689 2.59(3.79 3.79|5.54
PUSNet 38.94]36.28 0.9756 | 0.8028 2.2119.58 3.06]13.43
U-INR 39.06 | 36.82 0.9813 | 0.9802 1.612.90 2.454.12
A 47.88 | 52.36 0.9968 | 1.000 0.45]0.21 0.89 | 0.54
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Table 2 DISG-Net’s QR recognition accuracy on cover
images across different datasets
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Fig. 3 Visual quality analysis across different datasets
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Table 3 Detection accuracy of 6 steganographic schemes

ik, ARSI SRR IRIE T AR AR A

i - % A . . N
using SRNet and Zhu-Net AL S R, 75K T RS TR I %
i SRNet Zhu-Net o 5 R
Baluja 99.67 99.31 100 -
HiDDeN 76.49 78.36 /
ISN 79.30 84.91
DeepMIH 89.25 71.91 g 80 A 4
iSCMIS 69.64 69.64 g
A 54.79 56.40 ® sl A = LiDDeN;
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Kl 4 JEoR TAEAFIIZRREA BT . i SRNet \ T4 ABDH;
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KWiE B4 (distahash ) , FHPERG B / FE EGGT
FVBBEE / PR S22 BV AGG  Jo

i1 3% 4 v] 0, dis Al ahash BN A2 8 42T+ T
BRE R 5% EUR I . e RUR RS Jrimr, Y
dis [0 Aff PSNR $2F} T 2 5.24 dB, 1Y ahash [l
NPT T2y 3.69 dB, BRAMEAIIES T2 5.22 dB, [F]
if APD il RMSE B B, 7ERBR IR |-, R
M fifi ] dis 1 ahash 4371327+ PSNR £ 1.65 dB #il 1.66
dB, Wt {d 142 T4 2.80 dB, APD #il RMSE ik #|
S, FRETMGE DRI VE AL o S ARG S5 e
— bk,

3 5 R ATRI AL 2 BRSOG4 8 1Y) 5% 10
H2 5 AlAL YRR QR BURE, FaS KI5 AI
P AL BRI R, RS B PSNR ik
47.6317 dB, APD [4Z 0.2770, %W QR K545+
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Table 4 Image steganography quality of different component combinations

BFH / BE BEURXT | B /R R AR

e

PSNR/dB 1 SSIM 1 APD | RMSE |
Basic 41.4741|46.7759 0.9962 | 0.9988 0.7305 | 0.6406 1.3958 1 0.9562
Basic+dis 46.7170 | 48.4272 0.9987 | 0.9993 0.388510.4352 0.7449 1 0.7172
Baict+ahash 45.1623 | 48.4404 0.9973 1 0.9991 0.6987 | 0.2745 1.219010.7120
Baic+distahash 46.6911 | 49.5778 0.9984 | 0.9994 0.3869 | 0.3010 0.6424 | 0.5992

F5 EDivk BIEELEARRAREERE DISG-Net HRGSR
Table 5 Ablation study of DISG-Net on the Div2k dataset using different secret images
T/ B EUGXT | B /RSB T

i PSNR/dB 1 SSIM 1 APD | RMSE |
Wi R 46.6911 | 49.5778 0.9984 | 0.9994 0.3869 | 0.3010 0.6424 | 0.5992
QR Elf% 47.6317 | 51.1562 0.9992 | 0.9999 0.2770 | 0.2015 0.6024 | 0.5076
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AWFFEHEH T DISG-Net &8, Hoii i3 fif A& QR
AN | AR LS A MR RN, ST W
FINE TR EGERS . 4558 %EW], DISG-Net 7¢
Va5 ML . B (5 SRR B B e e s it
FIA I 2T I RIS IE T & B i A
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Reversible Image Steganography Based on Double Encryption and

Self-Supervised Discriminator

WANG Xiaohong, HE Xinjie, MA Chunyun

( College of Publishing, University of Shanghai for Science and Technology, Shanghai 200093, China )

Abstract: To enhance the security, visual consistency and anti-steganalysis capability of image steganography,
the reversible steganographic network DISG-Net is proposed. The model ensures the security of secret information
through an innovatively designed QR code-based dual encryption method, and employs 16 wavelet transform-based
reversible blocks to achieve high-fidelity embedding and reversible recovery. Meanwhile, a BYOL self-supervised
discriminator is introduced to constrain the feature distribution, making the generated results natural and difficult
to detect. By incorporating multiple objective losses, including reconstruction, guidance, contrastive, and hashing
losses, the framework achieves both visual consistency and precise recovery of secret information. Experimental
results demonstrate that DISG-Net outperforms existing methods in terms of image quality and information security,
offering a high-fidelity and tamper-resistant information embedding solution for printing and packaging, thereby
enhancing anti-counterfeiting and information protection capabilities.

Keywords: image steganography; invertible neural networks; double encryption; self-supervised discriminator
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