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Preparation and Performance of Antibacterial Soy Protein Isolate Composite Films
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Abstract: To address the environmental issues caused by the poor degradability of petrochemical-based cling
films, efforts are being made to develop a biodegradable composite film with enhanced barrier and antibacterial
properties for fruit and vegetable preservation. Soy protein isolate (SPI) and chitosan (CS) were used as the matrix
materials, while amphiphilic esterified lignosulfonate (ELS) was synthesized via a deep eutectic solvent (DES)
method and introduced as a compatibilizer into the SPI-CS system. The resulting SPI-CS-ELS composite films
were fabricated through solution casting. The results revealed that ELS acted as a molecular bridge, forming stable
interactions with SPI and CS through electrostatic attraction, hydrophobic interactions and hydrogen bonding,
thereby constructing a homogeneous and compact three-dimensional network structure. Compared with SPI and SPI-
CS films, the SPI-CS-ELS composite films exhibited significantly improved mechanical strength, superior water
vapor and oxygen barrier properties. Moreover, the inhibition rates against Escherichia coli and Staphylococcus
aureus exceeded 99%. The SPI-CS-ELS composite film provides a new strategy for developing high-performance
biodegradable food packaging materials.
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