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WA P RE SR IO TR T 20k, (IR Z 48 &
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Fig. 1 MFSA-Net overall structure
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2 MFFE &
Fig. 2 MFFE block
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LC(i,j)=XC(Z’2J_1;+XC(I’2]), .
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Fig.4 Multi-level gated attention block
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[

ST RERMREM L KBRS T AR ), %
FT1E e (gate block ) M HETT & 118, 529
TP B IR E el (5 )FIC6)
AR R R Em & w, MRS g

w, =0 (w(conv3(conv2(sofimax(Convl(X,)))))), (5)
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@ channel-wise splitting; @ element-wise multiplication

6 AREERAZZRIEESD

Fig. 6 Directional-enhanced dual-branch spatial attention
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KA RN py ARG o) WEBRAE; x() AWK
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F'=F+ax DCG(F). (13)
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partitioning, URP ) Fl58 i #H Ml 4 3 (intensity-wise
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F/=sort, (sort,(F))); (14)

q,k,v = MFFE(concat(F',F,)).,
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JIE 57 8

MRy - X, R

(40-4; = split(q);
ko k, = split(k);
v, idx = sort(v); (15)
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e chunk() ¥ 03 #44F s gather(') kLR H
Rz ide PRSI
AN, EEXF 2R NGRS E M S, LA
L SR EA—E, 2R FH URP HITWP XUJ3 322584 o
URP 7 Sl PR mas ) Btz aeE (e
JIE) o> RITERE. HG, AR RISE SRR h s A
T X, AT E KON (His, Wis) , JF
g kv e RPOCTCII B g1 e
RPN o N, R IS EL, ¢ R
KBS, s N IXEECE, h TSR, wil
THHTEE . URP B 25 8]V 3 AL aep AR A Hi
i Oypr FTRIR N -

Jd
O = AeV; (17)

X, d EE NS T
TWP 533075 18 T A% B R BEARME . SExtin ARHIE
HRERFRBEEE Y WX (15) , IR RUKEE —
SUAHET; 5, A g o, v, 007000
WLy g5, kg, vjeRP N X g AR AT X
(] P2 ST AT T AL TWP 3 302 BT K B Ay

7,3 T
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O = OV, o (19)
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FEMIALERE FEATEHE, HEaE o R AT s
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B4y, R OD, FIOL, , O, 2t i HEF i L5
A RNLE, 135 0, OR. 5 0., V&R, 135k

KBS LR 0o

0, = scatter,, (scatterH (0 w )) , (20)
Oﬁnal= concat (Orep’ Ot(ifs)e )O ( 21 )

24 MEEAEY
R v AR AE SRR O 7 A B AR A5 B Bk B, g
BAEXIFHR R Lo F1 Dice 1%k Ly, e sk, H

L=0.5Lo+ 0.5L,, (22)
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Le=——Y. .G, log(G ) (23)
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EDNCAEINCH
p=1 p=1
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3.1 EBRBEESITFHIER

52 ¥ Synapse. ACDC ( Automated Cardiac
Diagnosis Challenge ) BE~#EI{G 54, Hr, Synapse
Bt & 30 M1, 3k 3779 SRIETRIIR CT B,
W FEsk (A0) | IHEE (GA) . A% (LK) . £
B (RK) . AFE (LI) | Bl (PA) | J8UJE (SP) F
H (ST) 8 M awE, VIR EIEN 2.5~50 mm, K/NNy
512 x 512, MHdEAES, EH 18 RGN TIIZ, 12
ANZEEH TR, ACDC B84 100 .0 JEAS 2
s, Wi o0 (LV) OILIMYO) | 0% (RV)

3AbRIE . BLEEES, BEPLER 70 DMYIZAEAR . 20
AIHAFEEATFD 10 DNRAFEEAS

K AR LIPE 2280 ( Dice similarity coefficient,
DSC) . 95% &£ ¥ £ K B # (HausdorfT distance,
HD95 ) #E410EMr. Hivp, DSC {Elkm, WZ&7R 4y
HFIZEH S PR Z R SR R, HDOS (HERAIL,
W o E1h B 5 B R 2 0] R i R Am 25 8/, DA
T IR S PEREARAL .
32 ERE/RHRE

SEOB & FF NVIDIA Geforce RTX3060. Ubuntu
22.04.2. PyTorch 2.4.0 B LIEEH i T, N T HIE
FIr R AR R 59 5, 7E Synapse F1 ACDC s 4 I
WS Z R e it ik i AT e . L5 43 S IR
WA B g, mARGRRE R
224 x 224, /N RIS R IZ PR E R 3, BIRLAA)
27 ) R I A E O 0.0001, HEWR B B
J 4, ERINGRERE R 120, BINGES T CT
5 # MRI 81555 A MESA-Net B8, 358 1 5 X i)
PR PR AR T 25 SR 5 SR I 2 R AR 22
SRIG , RV MMERE A DG IR 225 BB )2 1538 2 45
45 )2, AR X e A 1R 25 (1) DT R A R R A N A
ESE, PCEE SRR Adam Ak #s 280, ZEME
BBz, B DI BRI IAE Y CT 5i# MRI
EURHEA TN, FF456 HIhR%s, RAIAF PGS
B LR A PEAR IR 23 Ik R
33 ARAAEMZRERS
33.1 FRFk % Synapse % 3E £ L4 R A1

2 145 T RIE 5 ¥EAE Synapse B 42 H a8 4%
PeREEAEL. R 1V ATLAE S, ZRTF RS EE RS
¥, V-Net, DARR, R50-UNet, UNet, AttnUNet 55
FET CNN B B AR 30 o Bk R 2 0 A o 1
K, Bl FREETKBE R, &K DSC
LA 77.77%. i F& T Transformer & 37 K 2 4 4t
Y TransUNet. TransClaw UNet. MT-Unet &5 5% 7l |
DSC ff—& bJt. ABHELE-2) DSC 5% 81.66%, 1
FHA FRA %, H GA. LK F1 PA 1 DSC 4510
69.91% . 85.85% Fll 64.33%, ¥ AL, XKL TA
RV E S g o

7 AN TR CT G T AL s B 25 . 1A
w1 A TFE AR, 5 2 HNRIEE 7 50000
TransUnet, MissFormer, HiFormer. SelfReg-UNet,
ParaTransCNN FIUA LR (1K) 70 F 45 5 KR 7 55 1 17
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®1 ARFETE Synapse HiEEE L# DSC #1 HDIS 4551
Table 1 DSC and HD9YS results of different methods on the Synapse dataset

» DSC/%
s HD95/mm “F-# DSC/%

GA LK RK LI PA SP ST
V-Net™®! 68.81 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR?" 69.77 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
R50-UNet™ 36.87 74.68 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
R50-AttnUNet!"! 36.97 72.10 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
UNet? 39.70 76.85 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
AttnUNet™ 36.02 7777 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT"! 32.87 71.29 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
ViT? 39.61 61.50 4438 39.59 67.46 62.94 89.21 43.14 75.45 69.78
TransUNet™™ 31.69 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
TransClaw UNet" 26.38 78.09 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55
LeVit-Unet-384"" 16.84 78.53 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76
MT-UNet™” 26.59 78.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
Swin-Unet'"” 21.55 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
HiFormer-B"” 14.70 80.39 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08
MissFormer"! 17.93 80.43 86.24 67.37 84.68 82.00 93.79 61.01 89.99 78.42
SelfReg-UNet™” 80.54 86.07 69.65 85.12 82.58 94.18 61.08 87.42 78.22
ParaTransCNN" 18.12 80.82 87.83 67.30 84.88 81.49 94.08 63.70 89.00 78.29
EN R 23.11 81.66 88.22 69.91 85.85 82.30 94.22 64.33 89.21 79.24

| E&lS MaE; A %

Fih4rE TransUNet MissFormer HiFormer-B SelfReg-UNet ParaTransCNN

s per;

7 ARFiEM Synapse T ER

Fig.7 Visual results of various methods on Synapse

A 1, MissFormer, HiFormer £l SelfReg-UNet 7£ 43
HINHRE S /N B, BT MERRHH AL A5 TransUNet
W I DI RO A TR s ANREERLRAS 1 I3 DAy
HERR A H . AL 7 55 2 47 mT L, XEFIBAZE R K H A
TR/ NPT R X 8, AR 5 T80 3 B 42
U, THAR T Ry EL L T 5 3 AT R

JRBEABAR HL 2540 52 2% () 1 BB A3 RIA5 R T, Al
ARG 2R B AR X 5, HL25 R AL
FB& SelfReg-UNet (1 HAth )55

DL g5 5 mT A T AU Bl Haar /)N A28 43R
WA ETEARIREE . ANFE 5 m b5 iE 2 1E,
SEPL T AR AR L R A R B A A R RS, [
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B 2 2900 1453 R TR 5 DX 3l ke 2 H il VR H
AN, WU 3 A5 AT R I B HES T i G R IE 5 R
SPATRIREERL G, PRI T A AR N
BRI 1 25 B AR IR
332 FRF*AEACDC #3EBE LR
=2 45t T AR i 7E ACDC a8 g 43 %1
iR, WNER2FLLEH, ABALEI RV, MYO,
LV K DSC 43 llik %] T 89.39% . 89.70% #i1 95.75%,
-1 DSC 4 91.61%. o, AR X MYO. LV
B9 25 o B, X RV #1455 R, 5 LeVit-
Unet-384" (W23 o X ilE— 25 UESE T AR (A7 350
x2 FRAFEEACDC HIBE LB DSC LR
Table 2 DSC results of different methods on

the ACDC dataset %
e 4 DSC DS¢

MYO LV
R50-UNet" 87.55 87.10 80.63 94.92
R50-AttnUNet"! 86.75 87.58 79.20 93.47
ViT-CUPY 83.41 80.93 78.12 91.17
R50 ViT?! 86.19 82.51 83.01 93.05
MissFormer'” 87.90 86.36 85.75 91.59
TransUNet"" 89.67 86.57 87.27 95.18
LeVit-Unet-384"" 90.32 89.55 87.64 93.76
Swin-Unet 90.42 88.41 87.71 95.13
MT-Unet"" 90.43 86.64 89.04 95.62
SegFormer3D"" 90.96 88.50 88.86 95.53
AR 91.61 89.39 89.70 95.75

3.4 HELLE
3.4.1 MFFE. MGA. DEDA & %=h 9 #7

F 3 MABIAEIH MFFE, MGA F1 DEDA &
X FIPERERYSE . N PRUESEVE B AP, R 2%
HERR RIS HOR S, KR iE R

R 3 MFSA-Net & FHBRXT 5 814 8E A0 B0
Table 3 Impacts of MFSA-Net sub-modules on
segmentation performance

MEFFE MGA DEDA DSC/%  HD95/mm
78.10 28.84
4 79.28 21.91
Vv Vv 80.53 2221
4 Vv Vv 81.66 23.11

MFE 3 LA, MFFE [k T8z 551
SCER T 2 RBEFRIESEE, fit DSC M 78.10% $2 /= 2|
79.28%, [AlfF, HD95 Hy 28.84 mm [ % 21.91 mm.

FIA MGA B, 3§51 il H A1 Rk A )
A B AR HI X 2R, DSC BT T 1.25%. 76 L FE il
3T DEDA, AR X JR) R 101 2% 240 19 5 23 [ S5 R Y
HUREAR R, DSC T % 81.66%. [HHEKRI, Z
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Table 4 Impacts of wavelet decomposition levels on

model performance
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3 3 3 80.56
3 3 5 81.66
3 5 5 78.91
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A Multi-Organ Segmentation Network Based on Multi-Scale Frequency

Features and Spatial Attention

ZENG Yezhan', KANG Yuncheng’, WANG Shuai', OUYANG Hongbo',

ZHONG Chunliang', HUANG Zhao®

(1. School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China;

2. School of Biological Science and Medical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: To address the influences of factors such as different sizes, diverse shapes, and complex anatomical

structures in multi-organ segmentation, a novel multi-organ segmentation method based on MFSA-Net (multi-scale

frequency spatial attention network) is proposed. The network utilizes multi-level and multi-directional frequency

decomposition to extract frequency-domain features of organs at different scales, which effectively expands the

receptive field and enhances the discriminability of shallow semantic features. Moreover, a multi-level gated attention

mechanism is introduced to achieve the integration of local fine-grained features and long-range dependencies, enabling

the network to focus on critical regions while suppressing background noise. To address the structural diversity and

variation among organs, a direction-enhanced dual-branch spatial attention module is designed to deeply integrate the

spatial position and gray-scale distribution features of edge pixels, thereby improving the model’ s spatial representation

capability. Experimental results demonstrate that the proposed method can effectively segment multiple organs with

large scale variations and complex structures, achieving average Dice similarity coefficient (DSC) scores of 81.66% and

91.61% on the Synapse and ACDC datasets respectively, which outperforms existing mainstream methods.

Keywords: multi-organ segmentation; self-attention mechanism; frequency transformation; spatial attention
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