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摘　要：为解决多器官分割中受大小不一、形状多样、几何结构复杂等因素

的影响，提出了一种基于 MFSA-Net（multi-scale frequency spatial attention 
network）的多器官分割方法。利用多层级、多方向频域分解获取不同尺度的

多器官频域特征表达，以有效扩大感受野并提高网络浅层语义特征的辨识性；

提出多层次门控注意力机制，实现局部细粒度特征和长距离依赖的融合，聚

焦关键目标并抑制背景区域；针对器官的结构差异和多样性，设计了方向增

强双分支空间注意力模块，以深度融合边缘像素的空间位置和灰度分布特征，

提高模型的空间特性捕获能力。实验结果表明，所提方法可以有效分割尺度

差异大、结构复杂的多器官，在 Synapse 和 ACDC 数据集的平均 DSC 分别

达到了 81.66% 和 91.61%，优于现有主流方法。
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1 研究背景

在医学图像处理领域，多器官分割是三维重建、

计算机辅助诊断和疾病分析的前提，在手术导航、器

官移植、术后疗效评估等方面发挥重要作用。临床上，

准确的多器官分割一般由经验丰富的医生通过手动

反复勾勒来完成。由于 CT 或者 MRI 的切片数量多，

手动分割不仅费时费力，而且分割过程易受主观性影

响。此外，医学图像中器官弱边界、噪声以及几何

形状的多样性，也进一步增加了分割的难度。因此，

研究自动、高效的多器官分割方法具有重要意义。

卷积神经网络 [1]（CNN）凭借其自动特征提取

能力，备受瞩目。以 U-Net[2] 为代表的编码器 - 解码

器通过跨层次跳跃连接实现浅层高分辨率特征与深

层语义信息的融合，广泛应用于医学图像分割。基于

U-Net 的改进版本，如 U-Net++[3]、Attention U-Net[4]、

SAU-Net[5] 以及其他 CNN 方法均获得了不错的性能，

并奠定了 CNN 在医学分割中的重要地位。然而，受

感受野大小的限制，CNN 方法无法建立长距离依赖，

在临床医学的应用受到制约。针对该问题，部分学者

提出了大核卷积方法，以拓展感受野，但同时也导致

了计算量的增大和细节信息的丢失 [6-7]。在此情况下，

基于 Transformer[8] 的分割方法逐渐引起了大家的关注。

Transformer 最初用于自然语言处理，通过捕获

输入序列的长距离依赖实现对全局上下文建模。随

后提出的 Vision Transformer[9] 和 DETR[10] 模型被应用到
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二维图像中，并取得了与 CNN 相媲美的性能。为增强

多尺度语义表达，Swin-Unet[11] 基于 Swin Transformer[12]

构建 U 型结构，利用滑动窗口注意力获取长距离

依 赖。MISSFormer[13] 通 过 引 入 ReMix-FFN 来 增 强

Transfomrer 的上下文桥接模块，以有效提取多尺度

特征中的全局依赖与局部上下文。上述网络在建模

全局语义方面表现出色，但由于缺乏局部细粒度的

细节捕获，在检测小目标、边缘结构等关键区域时

面临挑战。为融合 CNN 和 Transformer 两者的优势，

许多学者提出了两者的混合架构。Chen J. N. 等 [11] 将

ViT 作为编码器，基于 CNN 构建 U 型解码器，提

出了 TransUNet 网络。类似地有，LeViT-Unet[14]、

MT-UNet[16]、HiFormer[17] 综 合 CNN 和 Transformer
构建网络主干，利用 Transformer 构建注意力机制，

实现全局和局部信息的有效提取。此类方法在长距离

依赖的特征提取方面有了显著改善，但未充分挖掘图

像中丰富的频域信息来强化小目标和边界等重要局

部信息。

为深度融合 CNN 和 Transformer，充分挖掘频域

和位置信息，本文提出了一种基于多尺度频域特征与

空间注意力的多器官分割网络 MFSA-Net（multi-scale 
frequency spatial attention network）。本文的主要工

作如下：

1）针对小尺度器官分割问题，提出基于 Haar 小

波的多尺度频域特征增强模块（multi-scale frequency 
feature enhancement，MFFE）。

2） 设 计 多 层 级 门 控 注 意 力（multi-level gated 
attention，MGA）模块。其在降低计算复杂度的同时，

兼顾局部细粒度特征和长距离依赖建模，旨在提高模

型的上下文理解能力。

3） 提 出 方 向 增 强 双 分 支 空 间 注 意 力 模 块

（directional-enhanced dual-branch spatial attention， 
DEDA）。通过方向梯度编码卷积获取边缘信息，将

先验知识融入特征表示；双分支空间注意力模块能深

度融合边缘像素的空间位置和灰度分布特征，增强空

间邻域相关性。

2 方法

2.1 MFSA-Net 架构

MFSA-Net 架构如图 1 所示，是由编码器、解

码器和跳跃连接组成的 U 型结构，包含 MFFE 和

MGA-DEDA 两个基本模块。其中，MFFE 用于扩大

感受野和提高不同尺度多器官的检测能力，MGA-
DEDA 用于提高模型的空间相关性。

图 1 MFSA-Net 架构

Fig. 1 MFSA-Net overall structure

基于多尺度频域特征与空间注意力的多器官分割网络
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2.2 MFFE
由于不同器官在图像中存在明显的尺度差异，采

用单一尺度的特征提取方法难以全面捕获关键细节

和全局信息，且易受图像尺寸或分辨率变化的影响。

针对这一问题，利用 Haar 小波多尺度变换 [18] 的优势，

提出了 MFFE 模块（见图 2），以提高不同尺寸器官

的检测能力。

 
 

如图 2 所示，X1∈
B×C×H×W 为输入变量，首先

对 X1 进行 Conv-BN-ReLU 运算得到 ，然后，基于

Haar 小波变换将 分解为 4 个子带 LL、LH、HL、

HH，实现多尺度特征提取和融合。具体步骤如下：

1）沿通道维度对 进行水平方向的 Haar 小波

变换，即

                 （1）

式 中：XC∈
H×W， 为 在 通 道 C 的 特 征 矩 阵；

LC(i, j) 和 HC(i, j) 分别为通道 C 的低频系数和高频系

数，其中，i 和 j 分别为行和列序号，1 ≤ i ≤ H，

1 ≤ j ≤ W/2。

2）对 LC(i, j) 和 HC(i, j) 进行垂直方向上的 Haar
小波变换，进而获取 4 个特征子带 LL、LH、HL、

HH，即

       （2）

式中： 、 、 、 分别为低频子带、水平高

频子带、垂直高频子带以及对角线高频子带系数；

1 ≤ i ≤ H/2；1 ≤ j ≤ W/2。

3）对 、 、 进行拼接、归一化和 1×1 卷积

运算，实现高频子带融合，得到高频向量 XH；对低频

子带 直接进行归一化和 1×1 卷积运算，得到 XL。

           （3）

式中，φ(·) 表示归一化。

4）为融合高频和低频特征，将 XH 和 XL 进行拼接，

并基于残差思想将拼接结果与 相加，得到 MFEE
的最终输出。

2.3 MGA-DEDA
考虑到位置信息的提取有助于复杂的医学图像

分割，为提高算法精度和鲁棒性，基于空间相关性设

计了 MGA-DEDA 模块。如图 3 所示，MGA-DEDA
由 MGA、 外 部 注 意 力 [19]（external attention，EA）

和方向增强双分支空间注意力（DEDA）3 部分组成。

其中，MGA 用于提高模型对关键结构区域的关注力；

EA 模块用于突破单一样本视角的局限；DEDA 模块

用于通过双分支结构强化模型的空间位置一致性和

连续性。

 
 

2.3.1 MGA 模块
由于位置毗邻和灰度相似，多器官的浅层特征在

语义上高度相似，易出现误分割现象。针对这一问题，

综合窗口注意力机制 [13]、轴向注意力机制 [20]、门控

机制 [21] 设计 MGA 模块，实现从局部细节到全局特

征的多层次特征重构与选择。MGA 模块结构如图 4
所示。

为均衡计算效率和局部特征（如边界等）提

取，基于窗口注意力机制将尺寸为 H×W 的特征图

划分为 个窗口，每个窗口大小为 w×w。通

过并行算法将窗口注意力的计算复杂度从 O(n2) 降至

O(w2×n)。
为构建像素间长距离依赖，引入轴向注意力机

图 2 MFFE 模块

Fig. 2 MFFE block

图 3 MGA-DEDA 模块

Fig. 3 MGA-DEDA block
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图 4 多层级门控注意力模块

Fig. 4 Multi-level gated attention block
制。沿行和列方向计算注意力，即

                          （4）

式 中：Qrow、Krow、Vrow 分 别 为 行 方 向 展 开 的 查 询

（query）、 键（key） 和 值（value） 向 量；Qcol、

Kcol、Vcol 分 别 为 列 方 向 展 开 的 query、key 和 value
向量。

鉴于双线性插值和步长卷积易引入伪影 [22]，采

用门控模块（gate block）重新校准注意力图，实现

背景和干扰信息抑制。门控机制首先通过式（5）和（6）

计算注意力特征向量 w1 和门控信号 g。

w1=σ (ψ (conv3(conv2(softmax(Conv1(X2))))))， （5）

                        g=σ (X2)，                         （6）

式中：X2∈
C×H×W 为 MFFE 输出；σ (·) 为 Sigmoid 函

数；ψ (·) 为双线性插值。

然后，通过非线性权重分配方法聚焦特征图的关

键信息 [23]，即

                             ，                        （7）

                      ，            （8）

式中：yi 为 SoftPool 输出；ai 为激活因子；Xi 为输入

特征图中第 i 个空间位置处的特征向量；Xj 为位于其

邻域内的特征向量；Rk 为以 Xi 为中心、大小为 k×k
的局部空间区域；ωk 为计算可学习权重；i 和 j 分别

为激活区域和像素序号。

最后，将 w1、g 和 X2 逐元素相乘后，获得门控

模块的最终输出，

                      。                    （9）

2.3.2 EA 模块
自注意力机制主要关注单个样本内各元素之间

的关系，忽略了不同样本之间的相关性 [19]。针对这

一问题，在 MGA-DEDA 模块中引入可学习的外部

键记忆单元 Mk 与外部值记忆单元 Mv（Mk∈
C×S，

Mv∈
S×C，其中 S 为记忆单元数目， ），构建

EA，将数据集的全局结构信息融入特征表示中，如

图 5 所示。外部注意力分布矩阵（E∈ B×N×C）可表

示为

                     E=softmax(X3Mk)，                   （10）

式中，X3∈
B×N×C 为输入特征。

外部注意力的输出（Y∈ B×N×C）可表示为

                                Y=EMv。                          （11）

2.3.3 DEDA 模块
为有效分割器官结构变化剧烈的区域，提出基于

空间位置一致性的 DEDA 模块，如图 6 所示。DEDA
由 方 向 梯 度 编 码 卷 积（directional gradient-encoded 
convolution，DGC）和双分支空间注意力（dual-branch 
spatial attention，DBSA）组成。

图 5 EA 模块

Fig. 5 EA block

基于多尺度频域特征与空间注意力的多器官分割网络
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1）DGC 
DGC 主要用于强化局部边缘和空间结构表达，

通过在水平、垂直、对角等方向，以及中心梯度编码

提取局部像素梯度信息，并将其融入卷积核中，达到

增强特征表示和泛化能力的目的。以中心梯度编码为

例，设 p0 为卷积核中心坐标，编码输出为

                     （12）

式中：R 为 p0 的邻域；ω(·) 为卷积核权重；x(·) 为灰

度值。基于残差思想，将原始特征 F 相加后得到特

征 F′（F′∈ B×C×H×W），

                  F'=F+α×DCG(F )。                    （13）

2）DBSA
DBSA 通过等量区域划分分支（uniform region 

partitioning，URP）和强度相似分支（intensity-wise 
partitioning，IWP）双分支空间划分策略对输入特征

进行子区域划分和自注意力建模，从而提升模型对多

器官复杂解剖结构的空间建模能力。为扩大感受野，

对特征图 F' 进行拆分（split(·)）、排序（sort(·)）和

拼接（concat(·)）运算后 [24]，通过 MFFE 层映射为 q、

k、v（q、k∈ B×2C×H×W，v∈ B×C×H×W），即

                   （14）

式中：F1 为 F′的前半通道部分；F2 为 F′的后半通

道部分。

构建查询 - 键对，即

            （15）

式中：chunk(·) 为均分操作；gather(·) 为张量元素重

排运算；idx 为排序索引。

此外，针对多器官边缘的不连续性和弱边界，以

及解剖结构位置不一致，采用 URP 和 IWP 双分支结构。

URP 分支用于提高空间上分散多器官（如肾

脏）的分割性能。首先，将特征图等量划分为 s 个

子区域，每个子区域空间大小为（H/s、W/s），并

将 q1、k1、v1 ∈ B×(Nh×c)×(s×h×w) 映 射 为 q1′、k1′、v1′∈

 B×Nh×(c×s)×(h×w)，其中，Nh 为注意力的头数，c 为单

头通道数，s 为子区域数量，h 为子块的高度，w 为

子块的宽度。URP 的空间注意力权重 αURP 和最终输

出 OUPR 可表示为：

      ，      （16）

                      ，                         （17）

式中，d 为注意力缩放因子。

IWP 分支考虑了器官的灰度相似性。先对输入特征

中的像素按灰度值进行排序见式（15），从而形成灰度一

致的特征子空间；然后，将 q2、k2、v2∈
B×(Nh×c)×(h×w×s)

映射为 q2′、k2′、v2′∈
B×Nh×(c×s)×(h×w)，便于在每个子区

间内独立执行注意力机制。IWP 分支是基于灰度特

图 6 方向增强双分支空间注意力

Fig. 6 Directional-enhanced dual-branch spatial attention
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征而非空间位置，因此，其能够有效降低解剖结构位

置差异或器官的空间位置分散（如肾脏）带来的影响。

IWP 分支的空间注意力权重 αIWP 和最终输出 OIWP 可

表示为：

    ，       （18）

                        。                       （19）

为有效融合 URP 和 IWP，首先将 URP 和 IWP
在通道维度上进行重排，并通过逐元素相乘的方式实

现空间上下文的交叉和融合；然后，对交叉特征进行

均分，生成 和 ， 经过重排序还原其原

始空间位置，得到 Orep， 与 Orep 拼接后，得到最

终的融合结果 Ofinal。

           ，         （20）

                。               （21）

2.4 损失函数

为克服交叉熵损失产生的细节信息缺失 [25]，综

合交叉熵损失 LCE 和 Dice 损失 LD 构建损失函数，即

                      L=0.5LCE+ 0.5LD，                    （22）

           ，         （23）

           ，        （24）

式中，Gp, k 和 G'p, k 分别为第 p 个像素属于第 k 类的

真实标签和预测概率。

3 实验结果与分析

3.1 实验数据集与评估指标

实 验 用 Synapse、ACDC（Automated Cardiac 
Diagnosis Challenge）医学图像数据集。其中，Synapse
数据集包含 30 个案例，共 3779 张腹部临床 CT 图像，

涵盖主动脉（AO）、胆囊（GA）、左肾（LK）、右

肾（RK）、肝脏（LI）、胰腺（PA）、脾脏（SP）和

胃（ST）8 个器官，切片层厚为 2.5~5.0 mm，大小为

512×512。此数据库中，选用 18 个案例用于训练，12
个案例用于测试。ACDC 数据集包含 100 例心脏检查

数据，涵盖左心室（LV）、心肌（MYO）、右心室（RV）

3 个标注。此数据库中，随机选取 70 个训练样本、20
个测试样本和 10 个验证样本。

采用戴斯相似性系数（Dice similarity coefficient，
DSC）、95% 豪 斯 多 夫 距 离（Hausdorff distance，

HD95）进行评价。其中，DSC 值越高，则表示预测分

割结果与真实标注之间的重叠程度越大；HD95值越低，

则表示分割边界与真实边界之间的最大偏差越小，从

而表明模型分割性能越优。

3.2 实验平台与设置

实 验 是 在 NVIDIA Geforce RTX3060、Ubuntu 
22.04.2、PyTorch 2.4.0 的开发环境中进行。为了验证

所提模型的有效性，在 Synapse 和 ACDC 数据集上

将其与多种先进方法进行比较。实验分为训练和测

试两个阶段。在训练过程中，输入图像尺寸设置为

224×224，小波变换分解层级数设置为 3，模型的初

始学习率和权重衰减均设置为 0.0001，批次数设置

为 4，最大训练轮数设置为 120。将训练集中的 CT
或者 MRI 图像输入 MFSA-Net 模型，并通过定义的

损失函数计算模型预测结果与真实标注之间的误差；

然后，采用反向传播算法将误差信息逐层传递至各网

络层，根据其对整体误差的贡献程度调整相应的权

重参数，权重更新过程由 Adam 优化器实现。在测试

阶段，将已训练好的模型对测试集中的 CT 或者 MRI
图像进行预测，并结合真实标签，采用不同的评估指

标来综合评估模型的分割性能。

3.3 不同方法的实验结果分析

3.3.1 不同方法在 Synapse 数据集上的结果对比
表 1 给出了不同方法在 Synapse 数据集中的分割

性能比较。由表 1 可以看出，受限于尺寸固定的卷积

核，V-Net、DARR、R50-UNet、UNet、AttnUNet 等

基于 CNN 模型的分割模型通过跳跃连接缓解梯度消

失，但由于无法建立长距离关系，最高的平均 DSC
仅为 77.77%。而基于 Transformer 建立长距离依赖

的 TransUNet、TransClaw UNet、MT-Unet 等 模 型，

DSC 有一定上升。本模型平均 DSC 达到 81.66%，优

于现有主流算法，且 GA、LK 和 PA 的 DSC 分别为

69.91%、85.85% 和 64.33%，均为最优，这验证了本

模型的有效性。

图 7 为不同方法的 CT 图像可视化分割结果。图

中，第 1 列为手动分割结果，第 2 列到第 7 列分别为

TransUnet、MissFormer、HiFormer、SelfReg-UNet、
ParaTransCNN 和本模型的分割结果。从图 7 第 1 行
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表 1 不同方法在 Synapse 数据集上的 DSC 和 HD95 结果

Table 1 DSC and HD95 results of different methods on the Synapse dataset

图 7 不同方法的 Synapse 可视化结果

Fig. 7  Visual results of various methods on Synapse

模型 HD95/mm 平均 DSC/%
DSC/%

AO GA LK RK LI PA SP ST

V-Net[26] 68.81 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

DARR[27] 69.77 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

R50-UNet[2] 36.87 74.68 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

R50-AttnUNet[14] 36.97 72.10 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

UNet[2] 39.70 76.85 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

AttnUNet[28] 36.02 77.77 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

R50 ViT[9] 32.87 71.29 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

ViT[9] 39.61 61.50 44.38 39.59 67.46 62.94 89.21 43.14 75.45 69.78

TransUNet[29] 31.69 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

TransClaw UNet[15] 26.38 78.09 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55

LeVit-Unet-384[16] 16.84 78.53 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76

MT-UNet[27] 26.59 78.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

Swin-Unet[12] 21.55 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

HiFormer-B[17] 14.70 80.39 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08

MissFormer[13] 17.93 80.43 86.24 67.37 84.68 82.00 93.79 61.01 89.99 78.42

SelfReg-UNet[30] 80.54 86.07 69.65 85.12 82.58 94.18 61.08 87.42 78.22

ParaTransCNN[31] 18.12 80.82 87.83 67.30 84.88 81.49 94.08 63.70 89.00 78.29

本模型 23.11 81.66 88.22 69.91 85.85 82.30 94.22 64.33 89.21 79.24

可 知，MissFormer、HiFormer 和 SelfReg-UNet 在 分

割胆囊等小器官时，没有准确捕获边界；TransUNet
将胆囊区域错识别为胰腺；本模型获得了胆囊区域的

准确分割。从图 7 第 2 行可知，对于形态差异大且体

积较小的狭长形胰腺区域，本模型与手动分割非常接

近，而其他方法出现了欠分割。从图 7 第 3 行展示的

灰度值低且结构复杂的胃部分割结果可知，本模型能

有效分割复杂形状的胃部和肝脏区域，且结果明显优

于除 SelfReg-UNet 的其他方法。

以上结果可归因于本模型借助 Haar 小波变换获

取多器官在不同尺度、不同方向上的频域特征表征，

实现了局部细粒度特征与长距离依赖的有效融合，同
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时多层级门控注意力机制对背景区域起到抑制作用。

此外，双分支空间注意力结构推动了边缘特征与灰度

分布的深度融合，进一步提升了对具有不规则形状和

模糊边界器官的识别精度。 
3.3.2 不同方法在 ACDC 数据集上的结果对比

表 2 给出了不同方法在 ACDC 数据集中的分割

结果。从表 2 可以看出，本模型分割 RV、MYO、

LV 的 DSC 分别达到了 89.39%、89.70% 和 95.75%，

平 均 DSC 为 91.61%。 其 中， 本 模 型 对 MYO、LV
的分割结果为最佳，对 RV 的分割结果，与 LeVit-
Unet-384[15] 的接近。这进一步证实了本模型的有效性。

 

                      

 

3.4 消融试验

3.4.1 MFFE、MGA、DEDA 的影响分析
表 3 为本模型中 MFFE、MGA 和 DEDA 各模块

对分割性能的影响。为保证算法的公平性，保持网络

框架和训练参数不变，将验证模块进行替换。

从表 3 可以看出，MFFE 的增加扩大了感受野并

实现了多尺度特征提取，故 DSC 从 78.10% 提高到

79.28%，同时，HD95 由 28.84 mm 降至 21.91 mm。

引入 MGA 模块后，增强了局部窗口细节特征和轴向

的长距离依赖关系，DSC 上升了 1.25%。在此基础

上增加 DEDA，模型对局部边缘细节与空间结构的

敏感度提高，DSC 上升至 81.66%。同时还发现，受

大噪声、极低对比度的影响，DEDA 对边缘敏感性

放大了弱边界处的细微位置差异，导致 HD95 的值略

微上升。

3.4.2 小波分解层级数的影响分析
Haar 小波分解层级数决定了频域中被划分的深

度，与模型捕获的多尺度结构和边缘特征密切关联。

为分析小波分解系数对多器官分割性能的影响，对

MFFE、MGA、DEDA 中不同的小波分解层级数进

行了分析比较。MFFE 模块处于网络主干浅层，其主

要目的是提取浅层特征，并不需要过高的分解层级。

因此，综合考虑频率分解的细粒度和计算成本，将

MFFE 模块的层数设置为 3。位于深层网络的 DEDA
和 MGA，其小波分解层级数对模型整体性能的影响

如表 4 所示。 

 
 
由表 4 可知，当 MGA 模块的 Haar 小波分解层

级数由 3 增加到 5 时，模型的整体 DSC 由 80.56% 显

著提升至 81.66%。这表明 MGA 模块中采用的多层

次门控注意力机制能够有效利用更深层次的小波频

域信息，捕捉更广泛的语义上下文。因此，将 MGA
的 Haar 小波分解层级数设置为 5。在此基础上，将

DEDA 模块的分解层级数从 3 提高到 5。此时，DSC
出现下滑，其主要原因是过多的小波分解层级数易导

致空间信息的冗余和混乱，不利于边界细节信息的准

确获取。综上，将 MFFE、MGA、DEDA 的 Haar 小

波分解层级数分别设置为 3, 3, 5。

4 结论

针对医学图像多器官分割任务中不同器官差异

大、结构形态变化复杂等问题，本文提出了融合多尺

度频域增强特征与空间增强注意力机制的高效分割

网络——MFSA-Net。该方法设计了 3 个具有互补功

表 2 不同方法在 ACDC 数据集上的 DSC 结果

                 Table 2 DSC results of different methods on
the ACDC dataset

模型 平均 DSC
DSC

RV MYO LV

R50-UNet[2] 87.55 87.10 80.63 94.92

R50-AttnUNet[14] 86.75 87.58 79.20 93.47

ViT-CUP[9] 83.41 80.93 78.12 91.17

R50 ViT[9] 86.19 82.51 83.01 93.05

MissFormer[13] 87.90 86.36 85.75 91.59

TransUNet[14] 89.67 86.57 87.27 95.18

LeVit-Unet-384[15] 90.32 89.55 87.64 93.76

Swin-Unet[12] 90.42 88.41 87.71 95.13

MT-Unet[16] 90.43 86.64 89.04 95.62

SegFormer3D[31] 90.96 88.50 88.86 95.53

本模型 91.61 89.39 89.70 95.75

表 3 MFSA-Net 各子模块对分割性能的影响

Table 3 Impacts of MFSA-Net sub-modules on 
segmentation performance

MFFE MGA DEDA DSC/% HD95/mm

78.10 28.84

√ 79.28 21.91

√ √ 80.53 22.21

√ √ √ 81.66 23.11

表 4 不同小波分解层级数对模型的影响

Table 4 Impacts of wavelet decomposition levels on 
model performance

MFFE/ 层 DEDA/ 层 MGA/ 层 DSC/%

3 3 3 80.56

3 3 5 81.66

3 5 5 78.91

%
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能的关键模块 MFFE、MGA 和 DEDA，分别从频域

多尺度建模、语义上下文融合与空间结构增强 3 个角

度提升了模型的整体性能。在 Synapse 和 ACDC 两

个医学图像多器官分割数据集上开展的实验结果表

明，所提方法可以有效分割尺度差异大、结构复杂的

多器官，在 Synapse 和 ACDC 数据集的平均 DSC 分

别达到了 81.66% 和 91.61%，优于现有主流方法。
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A Multi-Organ Segmentation Network Based on Multi-Scale Frequency 
Features and Spatial Attention

ZENG Yezhan1，KANG Yuncheng2，WANG Shuai1，OUYANG Hongbo1，

ZHONG Chunliang1，HUANG Zhao2

（1. School of Transportation and Electrical Engineering， Hunan University of Technology，Zhuzhou Hunan 412007，China；

2. School of Biological Science and Medical Engineering，Hunan University of Technology，Zhuzhou Hunan 412007，China）

Abstract：To address the influences of factors such as different sizes, diverse shapes, and complex anatomical 
structures in multi-organ segmentation, a novel multi-organ segmentation method based on MFSA-Net (multi-scale 
frequency spatial attention network) is proposed. The network utilizes multi-level and multi-directional frequency 
decomposition to extract frequency-domain features of organs at different scales, which effectively expands the 
receptive field and enhances the discriminability of shallow semantic features. Moreover, a multi-level gated attention 
mechanism is introduced to achieve the integration of local fine-grained features and long-range dependencies, enabling 
the network to focus on critical regions while suppressing background noise. To address the structural diversity and 
variation among organs, a direction-enhanced dual-branch spatial attention module is designed to deeply integrate the 
spatial position and gray-scale distribution features of edge pixels, thereby improving the model’s spatial representation 
capability. Experimental results demonstrate that the proposed method can effectively segment multiple organs with 
large scale variations and complex structures, achieving average Dice similarity coefficient (DSC) scores of 81.66% and 
91.61% on the Synapse and ACDC datasets respectively, which outperforms existing mainstream methods.

Keywords：multi-organ segmentation；self-attention mechanism；frequency transformation；spatial attention
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