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Fig. 1 Schematic diagram of motor system
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Fig.2 The schematic diagram of the preparation process of fluorinated graphene and
cashew phenol modified phenolic resin
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Fig.3 XRD characterization of GO, rGO, and
FG-NH,F samples
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Fig. 4 Raman characterization of GO, rGO, and
FG-NH,F samples
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Synergistic Modification of Phenolic Resin with Fluorinated Graphene and Cardanol

for Enhanced Mechanical and Thermal Properties

ZHAO Fugang', CHANG Shilong', BAO Jialei', PEI Kemei', YANG Xiaogang’

(1. School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China )

Abstract: Phenolic resins exhibit outstanding thermal stability, mechanical strength, chemical resistance, and
excellent electrical insulation properties, and is widely used in fields such as rail transit and packaging coatings. To
prepare phenolic resins with high strength and thermal resistance, fluorinated graphene (FG-NH,F) was synthesized
via a hydrothermal method, and it was synergistically incorporated into the phenolic resin matrix alongside cardanol
containing flexible carbon chains, yielding fluorinated graphene/cardanol-modified phenolic resin (PRC-FG). The
long carbon chain structure of cardanol effectively mitigated the brittleness of the phenolic resin, while the fluorinated
graphene nanomaterial further compensated for the reduced thermal properties introduced by cardanol and enhanced
the mechanical strength of the resin. Results indicate that at 10% cardanol and 0.5% fluorinated graphene content, the
material exhibits flexural strength and tensile strength of 67 MPa and 55 MPa, respectively, representing 39.5% and
44.7% improvements over conventional phenolic resin. Although the incorporation of cardanol reduced the resin’s
residual carbon content and thermal decomposition temperature to 44.5% and 432 “C respectively, the synergistic modification
with fluorinated graphene elevated the residual carbon content and thermal decomposition temperature to 58.1% and 473 C,
effectively enhancing the phenolic resin’s heat resistance.

Keywords: phenolic resin; fluorinated graphene; cardanol; heat resistance; packaging coating
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