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oy rals B BRn T aG AT BR A w AR R
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g 71 & KPS, TEWIRIRGIAG, Ml E A
80 mm x 80 mm x 1 mm FUELELH, ¥E 60 C TG &
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Table 1 Raw material ratios of A p(AA-AMPS-HEMA) hydrogels

IREEHE 5 AA JiihE /g AMPS Jfit /g HEMA Jii i /g MBA Jiit /g KPS Jiitt /g H,0 {&#1/mL
HEMA, /AMPS, s 4 0.15 1.0 0.0015 0.005 5
HEMA, /AMPS, 4 0.20 1.0 0.0015 0.005 5
HEMA, /JAMPS, 4 0.25 1.0 0.0015 0.005 5
HEMA, /JAMPS, 5, 4 0.30 1.0 0.0015 0.005 5
HEMA, /AMPS, ,, 4 0.20 0.5 0.0015 0.005 5
HEMA, /AMPS, 5, 4 0.20 1.5 0.0015 0.005 5
HEMA, /AMPS, 5, 4 0.20 2.0 0.0015 0.005 5
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Fig.1 Schematic diagram of hydrogel preparation based on p(AA-AMPS-HEMA)
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(A, REAE)

Preparation of Highly Adhesive Hydrogels and Their Applications in Sensing Field

XIAO Dan, TANG Li, TANG Jianxin

( College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: To address the issue of inaccuracy in signal detection due to excessive reliance on adhesives when

traditional hydrogels were utilized as flexible strain sensors, a type of hydrogel with high adhesion, namely polyacrylic
acid/2-amine-2-methylpropanesulfonic acid/hydroxyethyl methacrylate (p(AA-AMPS-HEMA)), was fabricated

and employed in flexible strain sensors. The findings indicate that the hydrogel not only demonstrates outstanding

mechanical properties (with a tensile stress of 195.02 kPa and a tensile strain of 1193.55%) and remarkable adhesion (the

adhesion strength to pig skin can reach 38.94 kPa), but also possesses stable and sensitive sensing characteristics. It is

further assembled into a flexible strain sensor, which can precisely capture and monitor various human movements such

as finger bending, wrist movement, and knee bending. The hydrogel exhibits a promising application prospect in the

domain of intelligent sensing.

Keywords: hydrogel; adhesion; flexible strain sensor

-105 -



