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W OE. AN TASZBREKRZAR ORI E R, Bidf Hek
LI R ARG L R s RALAL (VHCF ) AAEK A 4R ¥ i SEAR,
FRE N BE R VHACF S R @B R A MNLE MO H e, AR
F) VHCF # o2 £ 2 L5 M3k £ 0§ £ 5%, 947 VHCF # o 4948 B T 4 5 #L
H, REREAW: BFELSRITR LRERIMFE R, TAHE R
[Fe(CN) )" 4% %, BRI LM EH 3548 VHCF; FF 4 [Fe(CN),]"
TAH Cuo”' BFRED ST ERS, Bl EEAHTFREC BF
By HakE, 5EE LR RRES FAE L KN EEE L AIRALE M
B AL S R AR W, Cu”' B F AR VHCF B2 P69 V™' B F 1 s R T8 3748
VHCF E#A 0.1 A/g R EE T B RAEIEE S 146.5 mA-h/g, HE3R
500 kG, HRE T 56.1 mA-h/g ¢ TTEEF; £ 1.0 Alg R BIREE T8I
BB E A 60.1 mA-h/g, B, 4EEE L3 £ M4 VHCF K R 4R %
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A DR m gt e B FExse )@, 48 Cu
PRI B (L hRifE R R R 0.34 V) | BB L
7T (844 mA-h/g fl 7558 mA-h/em® ) LA K K AR fik
Ea - GNINE Ty e T

WU X. Y. 45 "RGE T Cu 1y v g 20 T 10
KFZR ke, FEAEBE T T HA O 5 1 A AR SR
PE, IRt AREAL X AT ( Ex-situ X-ray powder
diffractometer, Ex-situ XRD ) & X i £k W Ui 3w i 4%
AL R, R THHEMLL S < CuS < Cu,S 1Y
NP 4, AT DU HL T RN o TR A — R
LT A A AL A YERE . 7E 100 mA/g Y HL IR
T B A ik 3044 mAWg B AR 1E 125 A/g i
KHFEET, T 1200 WG R TR 71
72%. BHN, ZHANG J. S. 25 U3 DL Ak 2f 0k fE y JE
GG AT T, REHAFTE T B Skt
CuS,.Se, B J12=MERERYSE . $5 1 CuS,_Se, ' S 55
Se [ B &4 T2 e A T ARAS, 1T FLE R AR AR
LN T LR T RAL R, AT SRR R
fitife, BERSBAAEER. A CuS,sSe s
KA $R AR R Ik 491 mA-h/g Y LL 2SR, FF7E 20 Alg
(AR o LTS T PR FE 80% Ry P 25 ik, Ho b
PEREZLHE T CuS. UL, 7K R HTH A & R4k
FUIRM B, IE—2TF &tk e AR R I R R A
FAEREMLHLE A DL J 1 oG4

-2 (Prussian blue analogues, PBAs)
HA TP =45 28850, 4 A B4R
(4[] s A R RT3 0 B T A/ B, B R
1200 T H Ak S 6 BB 3. PBAs 19 k2% i Xl
AM,[M,(CN)],zH,0, Hrhr A ik ATE B 22 18] B2
FHE 7, 45 LiT. Na'y K" 485 M, F1 M, 2] L)
B - i HEZR R Y Fe™ Fil Fe™™ HORBY IR FEA
O ST AR SE R ) 1 U 4 JE B T, W NETL Cu®y
Mn®", Co™ fl Co™ & " H A, A IEM M,
JCE R — 25 B i r A AR F L2 R BE, PRIE
RS M, & I L A A R S
MR IE . EIES R T E PV i LIRS ZFh R
RS (+2~+5) , FEd kgl B 2R &S 2 ) n]
RESx R ] i AR ISR N, FR AL S i H Ak 2
M, RV g LS T M, gt . XING L.
5 U DU R R SR, 3 e — A K G R ) A B
Rl K-V-Fe 54+ AU 91 K 37 )7 (K-V-Fe PBAs
NCs) , FAVE/K REE T IER AR, Firf K-V-Fe

PBAs NCs EtR A RUEE & T V L ik =16
PBAs Fa & BYAS Rk, TR TE 1 AL m i Ak
itk e AP R AR E P TE 2 Alg 110 HL I 25
T, K-V-Fe PBAs NCs HAT# %] 92.85 mA-h/g H LA
B, 23] 2000 AEFNG, AR AN 91.44 %,

R ERT, P E LSRRI F A L Y
WA GE . I, A BUEA L A s v R
A gt v U A LRI, RHERERIL
oK 50 it FROR R B B S

AR S R B P i R R AR

(ferrocyanide vanadium, VHCF ) F1E 7K 2 4 it

EM . LA T 7 B SR (scanning electron
microscope, SEM ) . XRD . #4 & 4347 ( thermogravimetry
analysis, TG) . f# B w28 6 21 4b 5t 3% ( Fourier
transform infrared spectroscopy, FTIR) . JUZR/HT.
HL JEGHE G 45 B IR & 96157 (inductively coupled
plasma optical emission spectrometry, ICP-OES) [ X
PRI HL FRETE ( X-ray photoelectron spectroscopy,
XPS) FRALLEH, W€ & B VHCF ¥ b 5 0L 9 T
2280 A5G E L A i HL (galvanostatic charge-
discharge, GCD) . AR Z (cyclic voltammetry,
CV) . #¢ it FH #t (electrochemical impedance spec-
troscopy, EIS) SEHLAL2EIRK K Ex-situ XRD iz,
3BT VHCF FE 7K Z 50 H it o i g e 7 =X

2 X

2.1 kA S5HHE

PTG ATl RFALER (K Fe(CN),) |
BT T AR IR A E . AL (VCL) il
SEMRAE AR A R A . R (CuSO,) . JE/K&
g, BRI EARHARA A, KK LR
= Al Aldndihse, CR2025, WU H BT AR IR
AMRA ], BEerdE, T DAL TR A R
Al AWM. W, RIETRE &R EHERA
Al ORI, ISR TARRA A Rw M L
( polyvinylidene fluoride, PVDF ), J7MI4b2=50) . 1-
PR -2- ik 0% B B ( N-methylpyridanone, NMP ) ,
PRETP AL e arwilFE] YN
22 UBRERE

SPHTRY, ME204, s KIEHEARAR, £
Sth S . HI-4A, HMBEHERAS AR AR, &
X EOHL, TGI6-WS, Hidesh i T A RI4T.
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03 X/, %
4 Bt € 4 1 (049 VHOF F3 Tk 224 B St EAR,

AP IR I EE B FE AR (DF-101S #4) | W3
PEFERS (LC-OES-120SH) , FifE )1 RIRPE AL 2R}
AR AA. BT (DHG-9140A) | HZE T
J4 (DZF-6020 ) , 1 ifEHg 72 SC 0 25 A B wl o
AR AL (MSK-T-07) . A #HL (AFA-T) |
YI R #L (MSK-T10) . AL (MSK-110D) , ¥
IR SR R R A RS Al X BT SFHY, Ultima
IV, HAHS RSt . & Sl 7 s,
Sigma300, fE[EZEH] LR, - 22N
LRI, TGA/DSC3+, 25 FEIMFR ) — FER 24141
LIAMRI I, TENSOR27, 7 [ A & v ik (L g 2
o X BTG FREIE (L, AXIS SUPRA+, HAR
AN, BALZE T AERS, CHI-660F, Fifg/RIELER
AR E s, BTS-5V/10 mA, HIIH
BURHE T A FRAF]

23 HmlE

1) VHCF-1 il 4

K FH 17 5y i) 2L U0 3E 15 i 4 VHCE-1 M k. 17
e, R TFAuNBHEAER, 5506 1.646 g
K;Fe(CN), F1 3.146 g VCI, SE 2V T 50 mL £ &7
KR, FER, TERE A 900 r/min (4 HE AR IR N #
PEPERSVE IR, 4 K Fe(CN), ¥ W 22 18 i A VCl,
Wb, FERAARSEIRG, THEZE 60 C, JHEE
Zefii e 6 h ISR . BEJS, LA 8000 r/min (1%
BLOMRIRGEDIE, IFRIHTOK SRR LB K2
WPRETTVE . fe)a, BUTEWE T 60 CHyHEZS T4
FELIRCT R, 1932 Y) VHCEF-1,

2) VHCF-2 il %

[ FER AU L i 4 VHCF-2 #1kE. 1%, 7
IR A E AR 50 mL, ¥k 0.1 mol/L A
K,Fe(CN), I A1 0.2 mol/L 1Y VCL, ik, 4, ¥
K;Fe(CN), % i 2212 Hu i A VCL B, [ B 76
T BRI R RN 55y . 6 h LU, LA 8000
r/min 55 OGBS EUTNE, R TOK B
FEFREREBEIE. TE, HIEwET 60 C
M ELAS TIEAR I T, 15 32" ) VHCF-2,

3) H i AR A

PG PEY) R ( VHCF-1/VHCE-2) . S HF (&
) L BRES R (R W) s 1 s 1
Jo i H T S E A B A TR ER, PRI AR
118 N FF b A T 5 1) A S 350 5 1) R AR ARk o
s AR TR A MLIR B AEA S A T b, il Al

JELJE R 20 pm R B, SRIEREFRAR A E T 60 CHY
A TA T 12 h, BJEEVIER 14 mm /)
[HEEEIE
2.4 PERIESRLZFDK

FJH XRD £ 4E VHCF-1/VHCE-2 (1) 1) ¥ 45 #4 5
K SEM X4} i) e H R A T R AL s R FTIR
FETE AR B RE ] K Ak 22548 s SR TG 43l
FEABHH U 9% s SR XPS RAEATRHAY 2 1
Gy ROCEMNAS; RDCER o Sl Bl 545 2
FUREFETEA TR R T R I B, Bk
PEREMN & 7E CR2025 AILfnefith FEFT, %t
DL B R A VR M, S @4 TEVE o, A1
mol/L 1) CuSO, 7KV J FLAFI , BEIET A PR
I FE RO IS B it 7 GCD L iR fE . 6
PPEREIN .l A A2 TR T CV AN EIS
Mk, A 0.1~10° Hz. ILA, FH Ex-situ XRD
M5BT VHCF R 57 L Ab 27 SO 3 A% i i 4+ e
fead i,

3 HERE5HMH

3.1 #MHEEBUEARKRERR
3.1.1 VHCF # &#& SEM £ #7

& 1 J& VHCF #ah ZEA RO AS 45T 1Y SEM A
%. M SEM K v LA i, VHCF-1 & VHCF-2 ¥ fi
KRB K/NA— . TR A ERIES . 1 a
F1 1b Hr VHCF-1 A i (1) 0K R AR 7R 2~5 pm 2Z [H]
1M VHCF-2 # 5 (A BURL A/ INUIFE 2~10 pm JEFEIA (&
le fil1d) , 2B TAEMEI&SS BT, &Y
JNE B R A Pd A A TR R AR AR R, A
AL/ IR AR R A 1, T/ INREAR RERS I KM RS
HL ARV A B A TR R, S T A 205 oo Pl A2 S el A v
(B T4 O R

a) VHCF-1 itk 10 000 £%
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2 um

b) VHCF-1 itk 30 000 £i%

-

d) VHCF-2 J{K 30 000 %
B 1 VHCF #&#8 SEM E&
Fig.1 SEM images of VHCF samples

3.1.2 VHCF # &8y XRD 447

& 2 J& VHCF F£ 4 9 XRD &1, 18 i 5 b5
~ F PDF#42-1440 [ X} t, W] DL & 8 VHCF-1 1
VHCF-2 & AT 5 W 5 37 5 A8 i AL 3838 6 -2l
Y VHCF 3 AW &, H, 17.4° 04+ RBLY
FEAEUE, XFN;F VHCF B9 (200) dhidr, 7 F 24.7°
55 35.4° 5255 (R RFAE I ) 43531 )& T VHCF 19 (220)
1 (400) FhiAT. IEAM, XRD K3 A Hoth 20
WY B, i8] VHCE-1 FIl VHCE-2 ¥ 834k 4l A
VHCE""

intensity/(a. u.)

PDF#42-1440

10 20 30 10 %0
20/(°)
2 VHCF #mij XRD i
Fig. 2 XRD patterns of VHCF samples

3.1.3 VHCF #&# FTIR 2 %7

KM FTIR 434t VHCF i AT BEAF7E 1Y B RE A
TRz, 250 R 3 fs. BRI, 7 2081 cm™
AERG I F — N IRBEAY IR W W(C =N), X2 T
SR PPIHESE T C = N BRI IR 3hE iy . 78
3444 cm™ 1 1614 cm™" b i IACIE 433 %R T O—H
FRIA AR 104 w(O—H) K25 iR shie o(0—H)",
XL VHCF it ] BEAATEMR UK / 45K

transmittance/%

WC=N)

4000 3000 2000 1000
wavenumbers/cm™!

3 VHCF ¥ FTIR 3%
Fig.3 FTIR patterns of VHCF samples

3.1.4 VHCF ¥ &8 TG 5 #

TR VHCF A8 oK/ 25 iK%
i, TERSASE N HAT T IRE M, S5 R 4 Fr
No HIEIATHL, YR AR T 200 CHF, VHCEF-1 Fl
VHCF-2 A i35 B o i et o i 2 MoK /
45K ZR R MBE S5 5, X Wmdk—UFsE T FTIR
Jeigh v(O—H) 1 6(0—H) Wy fA7E ), it 15E,
VHCF-1 Fll VHCF-2 A i 78 Mk B DX [i] 7 Jo it 61 2K 43
SR 24.38% F1 29.39%. X BLH] VHCF-1 fil VHCF-2
FEfh, B—A> VHCF Btk 47 5.2 4~ 6.7 4
H,0 73 ¥
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[B MM, &
S B &+ T A4 VHOF T ok R 4R Bt IEAR

weight/%

0 200 400 600 800
temperature/ °C.

4 VHCF @il TG Sirghsk
Fig. 4 TG analysis curves of VHCF samples

3.1.5 VHCF # &8 XPS 94

i XPS 3tk — e T VHCF K 5 2R 1Y
WA SOTREN A, GERE 5 R,

Ml Sa () XPS S EE AT, 254 fefi T 285.4,
397.9, 517.5, 532.5, 709.3 eV WY 4FAE U4 43 51 % B F C
Is. N 1s, V2p. O Is il Fe 2p %, {}iB] VHCF-1 I
VHCF-2 #£4ii1 €. N, V. Ol Fe G4 M, ",

16V 2p B 20 BE R XPS K3 (& 5b) v, 4%
AHEN 516.8, 523.9 eV LA, A BI% T V—0
SR VTV 2p ALV 2p7 3

1E Fe 2p MO 20 PR XPS E3% (& 5¢) W, 1E
455 HEN 708.5 eV A A —RBLNIL G, BRI

Fe2p

Cls Ols

intensity/(a. u.)

pr’

1 1 1 1 1
200 300 400 500 600 700 800
binding energy/eV

a) XPS i [&li

[Fe(CN),J* #

intensity/(a. u.)

728 724 720 716 712 708 704
binding energy/eV
c) Fe 2p MR RS

[Fe(CN)g]" ) Fe 2p™ 25 454 BE N 7154, 721.6 eV
() WA 48 06 DL 45 7] Fe™ 14 Fe 2p™” Al Fe 2p'” 75,
X ULHH VHCF B8 P 7E Fe'' Fl Fe® PRI 25 14k
[

1E C s (iR 43914 XPS B3k (181 5d) Hr, 284.8,
286.3, 288.7 eV MY Z5 5 RE 43 4K 1] C—C. C—N Fl
0—C=0 HHEH.

N Is B 55 405 XPS [ 18] Se 2k i [Fe(CN)]™
HH) C—N 4 (397.7 eV) | MIERE -N (1) C—N % (399.1
eV ) FImLmE -N sh g4 L -N (402.1 eV ) 41,
MERE -N $i5 1 26 1 20 v 28 (6 e B ™ 2B 19 7 2%
N Jﬁ% [17—19]O

1E O 1s B E 4% XPS i (1| 5f) i, 454
fiE R 530.8 eV L A IEXT B T V—0 O Z5. 45
AHUR T RSB, T LAERLUR 7 2L VO,
IR T e L a2, 1ok, 25466
H531.9 eV BIILA XS B T O—H 8 455 RE4 N
534.5 eV ( VHCF-1) Ry 0 IXT N HO, UESE T
SE KR Y (EARERER)E, 5 VHCF-2 FEdhH
e, VHCF-1 £ &% i O—H W i AL & 8 K, H,0
T S S 2SS RE RS . UL VHCF-1 FE i 45 ik
HEE LIEESRZ R R, 55 RE,
A FIFHE = AR A= R RN b i s R ReE 1

intensity/(a. u.)

528 524 520 516 512
binding energy/eV

b) V 2p M PER K

intensity/(a. u.)

288 286 284 282

binding energy/eV

d) C 1s Bm PR E g

292 290
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03 =

oxidized-N
of pyridinic-N

intensity/(a. u.)

404 402 400 398 396
binding energy/eV

e) N Is iy HER A

5 VHCF #mi) XPS 4R
Fig. 5 XPS analysis results of VHCF sample

2545 TG 430 . J0& 3 K ICP-OES Wik, B
T VHCF #: 5 59 = B Al 21 % 4% 4140 MR B 25 1
iR 1R, WA AT AL, VHCF-1 45 il
VHCF-2 #f iAF HE R 12423 B R VFeq 07 [Fe(CN)], g5
5.2H,0 Fil VFe, os[Fe(CN)gloss - 6.7H,0, H VHCF-1 k¢
i HA 20 [Fe(CN) " B4 ok, XA A
g Ak 2E O R Cu™ iR AR BE T Z BT A
m A R), DN T AR H A Y

®1 VHCF #mibtFHAmAHER

Table 1 Chemical compositions analysis results of

VHCF samples %
4 T )
e 5 LIS S BT
\% Fe C N H,0

VHCEF-1 13.51 17.06 20.60 24.03 24.80
VHCEF-2 17.53 11.55 13.61 15.88 41.43

3.2 #EpELEERE
3.2.1 VHCF &8 CV &
%K, VHCF-1 fil VHCF-2 B 7E 0~0.4 V 1Y
HLRYE R, L 0.1 mV/s FOFF3EE I T CV L,
I 3 Elry Cv thZ& & 6 fos.
M 6a A1, VHCF-1 LA 7E 0.09 V F10.25 V
EHEE‘JT%/\EU%EEI"JLJ?W“, XFI Cu" i ATl
LS EES, Rt T VR T 0.20 V #il
0.34 V 3 AT 58 1) A AL Xﬂ”? RNy
ZE i Cu” LR . EAh, BEETEIR B’Jﬁﬁ,
CV M&IEARFF AL, Ui VHCF-1 H i A R 47
FA AT 3
M & 6b 7] A1, VHCF-2 Hifl & ¥ T 5 VHCF-1
HL AR ALY CV 6, (A2 VHCF-2 FL i 7F 0.38 V
BRI BT o B AR AR IR S . FEARTR] A

intensity/(a. u.)

binding energy/eV

£) O 1s Bm PR E

T, VHCF-1 B CV Hi £k imiFL ] 2t VHCF-2 H
ety CV BHZE AR, i8] VHCF-1 AR i LAk
PEFIGEHTBE SIULT VHCF-2 s .

1.2

0.8

0.4

carrent/mA

1
0.1 0.2 03 0.4
voltage/V

a) VHCF-1

carrent/mA

0.1 02 0.3 0.4
voltage/V
b) VHCF-2
6 VHCF i) CV #hk
Fig. 6 CV curves of VHCF electrodes

3.2.2 VHCF &% GCD %
& 7 & VHCF-1 1 VHCF-2 % 1E 0~0.4 V BYHE

BRI, LL0.1 Alg B9 H 7% B #5417 GCD ik A%
ZER
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03

M 7a 7] LIFE H, VHCF-1 HLHL7E 0.09 V F10.25
V LA BB &, X Cu® i A
VHCE-1 B89 76 0.20 V A1 0.35 V 24 L T
FHCH TSRS, SR Cu® INEAR . AT,
VHCF-1 B O U AR o 146.5 mA-h/g, FoH
FLZ5 4R 300.0 mA-h/g, AHRAIFERRCR Hy 48.9%.
TESE =R FERC R I A2, VHCF-1 s R 118.4
mAh/g L FL 25 B & 227.1 mAh/g TS L FL A i,
FERECE LT 2 52.1%,

M 7o BT LAE H, VHCFE-2 HLH7E 0.1 V i1 0.25
VBRI &, 7E 0.17 V 12 0.38 Vit
EAERKNFTRTG, 5 CV L mxTE A bif g
SEFEXT N, VHCF-2 HLRR Y T U B2 o R 102.1
mA-h/g, FoHL 2R N 209.7 mA-h/g, AR A JEAS
BN 48.7%; FE ORI R A #E4T, VHCF-2 H
W 7E / i EL S AR BT R, R RRCR TR

L E IR VHCF Tk R 4R it IEAR

42.0%-
04
03
2z
&
£ 02
[=}
-
I st
0.1 2nd;
3rd
0 50 100 150 200 250 300
capacity/(mA-h-g™")
a) VHCF-1 Hitk
0.4
0.3

voltage/V
(=)
]

1 st;
2nd;
3rd

o
=

0 30 60 90 120 150 180 210

capacity/(mA-h-g™")
Pl
b) VHCF-2 Hif} LR
7 VHCF B GCD #i4k
Fig. 7 GCD curves of VHCF electrodes hEl . IE] &
*

I, HA% VHCFE-1 5 VHCF-2 Hibk B4 AL
FEHH S H R, {HS& VHCF-1 A i &
HOREAR, HITHCH LA B R, X i B Uk B /)N

H. [Fe(CN)J"™ £ ) VHCF-1 #£85h, K Cu® 424t T
2 ()Y B0 T8 S A TG, AR T
i
3.2.3 VHCF 4% &9 48 30 1 4k 13X

/% 8 /& VHCF-1 1 VHCF-2 H#2 7£ 0.1 A/g HL
N AR 4k

160

@ VHCF-1;
@ VHCF-2

capacity/(mA-h-g™")
% I}
=] (=]

I
(=)

0 100 200 300 400 500
cycle number

8 VHCF BRI TEFF 1% RE i 4%
Fig. 8 Cyclic performance curves of VHCF electrodes

F &l 8 AT A1, VHCF-1 HL#) (4 1 U R HL 25 1
4 146.5 mA-h/g, Zad 500 IRTEHR G, PR T 56.1
mA-h/g [ A L2 o, AR AR R R 38.29%.
VHCF-2 HL il 28 32 500 R FA 5, 0 Ha, b 2 1 D)
M 102.1 mA-h/g FFEZE 35.4 mAhg, BEGEFEN
34.67%. A%, VHCF-1 H Ak HA XL S 5
WhaEtE, B VHCF-1 Mk R Rase 4t ok A
F T A 55 1 0 B 2R AR I, DA A v Y
PEERERE. (HARER S, VHCF-1 Al VHCF-2 Hifk
TERT 100 YR FEH AL AR i 25 AR A PR I AR
FEBE IS 400 YRR E R T v 25 1 101 2k ORI AT r 22
fifto X P RESE B T W U i — 4B 2R A5
B WG48 B 1 I i Zs B S 6, ZEDE IR
HI, Cu™ ¥ HELE VHCF %4+ B 28 b ORI EU L
V', R R I B AR RN A T
ARV Aiel cu® 1O, P E & cu”
SURBTE 65— B 2R 0 4 Bt 1) A T 7 B A e A B
AT, A
3.2.4 VHCF %% 64 4% F bk 62 0%

VHCF-1 5 VHCF-2 AR A5 R BRI a2 5 an ]
9 fl7n o

i E AT, VHCF-1 5 VHCF-2 HU AR [ HL 25 &
L B RS RN, AR T VHCF-2 Hifk,
VHCF-1 HUAREAT: 5 1) LU 2 BT 0 e Je I v
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HLEZS . flhn, Mm%k 0.5 A/g i), VHCF-1
F A B4 HL G 25 R 99.8 mA-h/g, 1fif VHCF-2 Hi#%
BT FE 25 M 60.6 mA-h/g; LA EEIG R F] 1.0
A/g i, VHCF-1 A5 60.1 mAh/g RO FL 25t
1M VHCF-2 HL R (A H HE 253k 33.1 mA-h/g.

16(}\%
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Abstract: To satisfy the urgent requirements for developing high-performance electrode materials for aqueous
copper batteries, vanadium-based Prussian blue analogue ferrocyanide vanadium (VHCF) was fabricated by a simple
co-precipitation method and utilized as cathodes for aqueous copper batteries. The effects of reaction temperature and
stirring speed on the micromorphology and microstructure of VHCF samples were discussed, while the differences in
electrochemical performances of different VHCF samples were investigated, and the copper storage mechanisms of
VHCF samples were analyzed. The results revealed that the rich [Fe(CN),]", small particles and stable structure of
cubic VHCF could be obtained by ascending the reaction temperature and stirrer speed. The more [Fe(CN),]*" could
provide more chemical active sites for Cu”” ions, the smaller particle could improve the Cu’" ions diffusion rate, and
the more stable crystalline water combined with the Prussian blue framework could improve the cycling stability. The
Cu”" ions displaced the V" ions in the VHCF framework to form an irreversible new phase during the electrochemical
processes. VHCF cathodes delivered a high initial discharge specific capacity of 146.5 mA-h/g at a current density of
0.1 A/g and retained a reversible capacity of 56.1 mA-h/g after 500 cycles, and exhibited the discharge specific capacity
of 60.1 mA-h/g at a high current density of 1.0 A/g. Therefore, the applications of VHCF in aqueous copper batteries
provide new possibilities for the design and development of high-performance electrode materials for aqueous copper
ion batteries.

Keywords: Prussian blue analogue; VHCF; aqueous battery; copper battery; cathode material
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