doi:10.3969/j.issn.1674-7100.2020.06.005

皮伟强	周	伟
陈茂林	银银	兑明

湖南工业大学 冶金与材料工程学院 湖南 株洲 412007 摘 要:采用模压成型工艺和固相反应烧结制备了碳纤维/莫来石(C_f /Mullite)复合材料。对 C_f /Mullite复合材料的物相组成、微观结构进行了表征,使用矢量网络分析仪研究了碳纤维(C_f)含量对莫来石($3Al_2O_3 \cdot 2SiO_2$)陶瓷在X波段($8.2 \sim 12.4$ GHz)的介电性能和吸波性能的影响。结果表明: Al_2O_3 和SiO₂在高温下充分反应生成了莫来石陶瓷, C_f /Mullite复合材料具有相对致密结构, C_f /Mullite复合材料的介电常数和介电损耗角正切值($\tan \delta$)均随碳纤维添加量的增加而增大,且 C_f 的加入使得莫来石陶瓷具有更优的电磁波吸收性能。 C_f 体积分数为1.2%、 C_f /Mullite复合材料厚度d=1.5 mm时,反射损耗最大吸收峰为-33.3 dB,反射损耗优于-5 dB的吸收频宽达3.675GHz,反射损耗优于-10 dB的频宽达到2.205 GHz。 C_f 的加入显著提高了莫来石陶瓷的吸波性能。

文章编号:1674-7100(2020)06-0034-09 **引文格式:**皮伟强,周 伟,陈茂林,等.碳纤维增强莫来石陶瓷的介电性 能和吸波性能研究 [J]. 包装学报,2020,12(6):34-42.

1 研究背景

在移动电话、医疗设备、雷达和微波传输等各种 电子设备及技术的使用中,电磁波造成的电磁干扰 越来越多,电磁污染问题日益严重^[1]。过去10年中, 用于电磁辐射防护、军事装备的雷达隐身技术和医疗 应用的微波吸收材料受到了极大的关注^[2-6]。电磁波 吸收材料是一种对电磁波在宽频带内具有高吸收量 的功能材料,可以通过介电损耗或磁损耗将电磁波能 量转化为热能或其他形式能量^[7-8]。在一些特殊的应 用中,对具有质量轻、厚度薄、机械强度高、耐高温、 抗氧化和吸收频带宽等特点的吸波材料的需求越来 越大^[9-11],例如航空航天行业。在这种高温氧化环境 中,金属基复合材料^[12-15]和聚合物基复合材料^[16]的 吸波性能会发生劣化。陶瓷基复合材料具有低密度、 耐高温等特点,用做高性能的高温吸波材料已受到广 泛关注^[17-19]。

莫来石(3Al₂O₃•2SiO₂)陶瓷具有低密度、低介 电常数,良好的耐化学性、热稳定性、抗蠕变性等特 点。重要的是,莫来石原料可用低成本氧化铝(Al₂O₃)

收稿日期: 2020-10-06

E-mail: 1073975907@qq.com

基金项目:国家自然科学基金资助项目(51604107),湖南省自然科学基金资助项目(2019JJ50115)

作者简介:皮伟强(1996-),男,湖南株洲人,湖南工业大学硕士生,主要研究方向为陶瓷基复合材料,

通信作者:周 伟(1986-),男,湖南常德人,湖南工业大学副教授,博士,硕士生导师,主要从事电磁屏蔽与吸收材料的研究,E-mail: zhouwei@hut.edu.cn

和二氧化硅(SiO₂)合成,并且在低莫来石化温度下, 莫来石原料易于提纯^[20]。由于上述优点,莫来石被 认为是高温氧化环境下使用的首选材料体系^[21-22]。此 外,可引入第二相导电材料来调节莫来石陶瓷的介 电常数,获得较好的阻抗匹配和介电损耗特性,从 而提高吸波性能。如 Zhou L.等^[23]采用大气等离子 喷涂技术制备了氧化锌/莫来石复合涂层,通过掺杂 ZnO 来提高莫来石陶瓷的介电常数和吸波性能。随 着 ZnO 含量的增加,介电常数实部和虚部均显著增 大。但在高温环境中,ZnO 和 Mullite 进一步反应使 ZnO 的含量下降,导致 ZnO/Mullite 复合涂层的复介 电常数显著下降,从而吸波性能降低。

在众多介电材料中,碳纤维(carbon fiber, C_f) 价格低廉、易于使用,且具有低密度、耐高温、高导 电性能,因而有很大的应用潜力^[24-26]。在非氧化环境、 1 500 ℃的高温下,碳纤维仍表现出优异的物理性能 而不会降解^[27]。因此,在低成本、耐高温性能等方面, 以碳纤维为结构功能材料的莫来石陶瓷,比目前报道 的大多数陶瓷基复合材料具有明显的优势,碳纤维增 强莫来石(C_f /Mullite)复合材料是极具应用前景的 吸波材料。

在本课题组前期的工作中,采用 SPS (spark plasma sintering)工艺制备了具有良好电磁屏蔽性能 的 C_f /Mullite 复合材料。当碳纤维质量分数仅为 1% 的复合材料在厚度为 2.0 mm 时,其最高屏蔽效能 超过 40 dB^[28],但 C_f /Mullite 复合材料作为吸波材料 应用及其吸波机理还有待进一步深入研究。此外, SPS 工艺设备精密复杂,价格高昂且基础理论尚不 清楚^[29]。本研究采用成本低、工艺简单的模压成型 工艺和固相反应烧结制备出 C_f /Mullite 复合材料,并 研究 C_f 对 Mullite 陶瓷室温下介电性能和吸波性能的 影响,以期能为 C_f /Mullite 复合材料的应用提供一定 的理论参考。

2 实验

2.1 原材料与仪器设备

1)主要原材料

氧化铝(Al₂O₃),分析纯,西陇科学股份有限公司; 二氧化硅(SiO₂),分析纯,国药集团化学试剂有限 公司;氧化钇(Y₂O₃),分析纯,国药集团化学试 剂有限公司;聚乙烯醇⁺CH₂CHOH⁺,分析纯,无 锡市亚泰联合化工有限公司;碳纤维(聚丙烯腈基碳 纤维),T700-12K,日本东丽公司。

2) 主要仪器与设备

磁力加热搅拌器,HJ-4,巩义予华仪器有限责 任公司;电热鼓风干燥箱,101-1EBS,北京市永光 明医疗仪器有限公司;箱式高温电炉,JXL180030, 上海久工电器有限公司;高温真空管式炉, TL1700,南京博蕴通科技有限公司;立式行星型球 磨机,XQM-4,长沙天创粉末技术有限公司;X射 线粉末衍射仪,D/max2550,日本Rigaku公司;扫 描电子显微镜,Nano SEM230,美国TEI公司;矢 量网络分析仪,N5230A,Agilent公司;快速油压机, KTQ系列,昆山金拓智机械有限公司。

2.2 试样制备

1) 莫来石的制备

将Al₂O₃和SiO₂粉末按3:2的量比放入玛瑙罐中, 并按3:2的球料质量比加入玛瑙球进行球磨。球磨转 速为250 r/min,时间为48 h,球磨好的料浆放入鼓 风干燥箱,干燥12 h。将烘干后的混料研磨过筛,然 后称取适量粉末倒入Φ80 mm钢制模具中干压成型, 压力为5 MPa,保压5~8 s。将压制好的生胚放入刚 玉坩埚,并置于箱式高温电炉中,以5℃/min升温 至1500℃,保温4 h,烧结成莫来石圆块。再将莫 来石圆块粉碎研磨并过40目筛,制得莫来石粉末。

2)碳纤维/莫来石复合材料的制备

将莫来石粉末与长度为 1 mm 的碳纤维以及质量 分数为 10% 的 Y_2O_3 放入玛瑙罐中,再加入 100 mL 去离子水和玛瑙球,球磨 4 h。将球磨好的料浆加热 搅拌至黏糊状后,转移到鼓风干燥箱中干燥,然后取 出研磨并过 80 目筛后得到混合粉末备用。在制得的 混合粉末中加入 5~6 滴质量分数为 5% 的聚乙烯醇溶 液进行充分研磨并过 40 目、60 目和 80 目筛,然后 称取适量粉末倒入 Φ 60 mm 钢制模具中,使用快速 油压机压制成型,压力为 12.5 MPa,保压 3 min。将 压制得到的生胚放入鼓风干燥箱中干燥,将充分干 燥的生胚置于管式炉中进行固相烧结,Ar 气氛保护, 升温速率为 5 °C /min,并在 600 °C 之前将聚乙烯醇 排出,最后升温至 1 500 °C,保温 4 h,共制得 4 种 不同纤维含量的 C_f /Mullite 材料样品,如表 1 所示。

表 1 不同纤维含量的莫来石陶瓷基复合材料 Table 1 Mullite ceramic matrix composites with different fiber contents

样品代号	M0	MC0.4	MC0.8	MC1.2
C _f 体积分数 /%	0	0.4	0.8	1.2

● 装 学 报 PACKAGING JOURNAL 2020 年第12 巻第6期 Vol. 12 No. 6 Nov. 2020

2.3 分析方法

利用 X 射线衍射仪确定试样的物相,利用扫描 电子显微镜观察试样的形貌和微观结构。将4 种样品 加工成 22.86 mm × 10.16 mm × 3.00 mm 的长方体试 样,利用矢量网络分析仪和波导法测试材料在 X 波 段的常温复介电常数 $\varepsilon_r = \varepsilon' - j\varepsilon''$ 。

3 结果与讨论

3.1 C_f/Mullite 复合材料的物相组成

图 1 为碳纤维、纯莫来石陶瓷(M0)和碳纤维体积分数为 0.8%的 C_f/Mullite 复合材料(MC0.8)的XRD 图谱。由纯莫来石陶瓷的图谱 b 可知,所有的衍射峰均对应莫来石相(JCPDS no. 74-2419),这说明 Al₂O₃和 SiO₂ 在高温下充分反应生成了莫来石陶瓷。由 C_f/Mullite 复合材料(MC0.8)的图谱 c 可知,除了出现莫来石相的衍射峰外,还出现了部分由少量烧结助剂 Y₂O₃与 SiO₂ 反应生成的 Y₂Si₂O₇烧结液相的衍射峰^[30]。由碳纤维的图谱 a 可知,碳纤维未出现衍射强峰,而是非晶态的宽峰。由于碳纤维为非晶态结构^[31],所以 C_f/Mullite 复合材料的衍射图谱中未出现碳纤维的衍射峰。

图 1 碳纤维、纯莫来石陶瓷、C_r/Mullite 复合材料的 XRD 图谱

Fig. 1 XRD patterns of carbon fiber, pure Mullite ceramics, C_f/Mullite composites

3.2 C_f/Mullite 复合材料的显微形貌

图 2 为纯莫来石陶瓷(M0)和 C_f/Mullite 复合 材料(MC0.8)的断口 SEM 形貌。由图 2a 和 2b 可知, 纯莫来石陶瓷试样具有相对致密结构,其中的少量孔 隙是由于高分子黏接剂排胶时蒸发所造成。由图 2c 和 2d 可知,在 C_f/Mullite 复合材料中碳纤维完整地 存在于莫来石基体中。由图 2d 可知,部分碳纤维与 莫来石基体之间存在一定孔隙,这可能是由于碳纤维 与莫来石陶瓷的热膨胀系数不匹配导致两者界面结 合处出现缺陷,也有可能是纤维引入孔隙所导致。

a) M0 放大 2 500 倍

b) M0 放大 10 000 倍

c) MC0.8 放大 2 500 倍

d) MC0.8 放大 10 000 倍 图 2 纯莫来石陶瓷和 C_f/Mullite 复合材料的 断口 SEM 形貌

Fig. 2 Fracture SEM morphology of pure Mullite ceramics and C_f/Mullite composites

皮伟强,等

碳纤维增强莫来石陶瓷的介电性能和吸波性能研究

3.3 C_f/Mullite 复合材料的介电性能

图 3 为 C_f /Mullite 复合材料在 X 波段的介电性 能曲线。由图 3a 和 3b 可知, Mullite 陶瓷的介电常 数实部和虚部分别为 6.1~6.8 和 0~0.30, 属于典型 的透波材料。随着 C_f 添加量的增加,复合材料的介 电常数实部和虚部也随之增大。当 C_f 加入的体积分 数为 1.2% 时,复合材料的实部和虚部分别增大至 18.46~25.58 和 4.2~9.6。因此,C_f 的加入可以显著增 大 Mullite 陶瓷的复介电常数。

图 3 C_f/Mullite 复合材料的介电性能曲线

Fig. 3 The curves of dielectric properties of C_f/Mullite composites

根据德拜理论,复合材料介电常数的实部(ε') 和虚部(ε"),可分别用公式(1)和(2)描述^[32]。

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{\rm s} - \varepsilon_{\infty}}{1 + \omega^2 \tau^2}, \qquad (1)$$

$$\varepsilon'' = \frac{\varepsilon_{\rm s} - \varepsilon_{\infty}}{1 + \omega^2 \tau^2} \omega + \frac{\sigma}{\omega \varepsilon_0}, \qquad (2)$$

式(1)~(2)中: ε_{∞} 为高频极限介电常数;

- ε_s为静态介电常数;
- ε_0 为自由空间介电常数(8.854×10⁻¹² F/m);
- ω为角频率;
- τ为弛豫时间;
- σ 为电导率。

ε'表示电磁波能量储存能力,并由极化所控制。
由公式(1)可知,随着碳纤维的加入,碳纤维与莫
来石基质之间产生大量新的界面,大量电荷聚集在异
质界面上并形成偶极子,从而在外部交变电磁场作用
下导致界面极化增加,所以ε'也随之增大。

ε"表示电能损耗能力,由极化和电导率所控制。 由公式(2)可知,由于碳纤维具有良好的导电性, 所以随着碳纤维含量的增加,复合材料中的自由电子 越来越多,复合材料的电导率也大大提高;而且 C_f 的加入使材料内部形成一些局部导电网络,显著促进 了迁移电子和跳跃电子运动^[33],这有利于材料电导 率的提高,从而电导损耗随之增大。因此 ε"随着 C_f 含量的增大而增大。在 X 波段内,电导率可以用下 述公式(3)^[34] 描述:

$$\sigma = 2\pi f \varepsilon_0 \varepsilon''_{\circ} \tag{3}$$

由图 3d 可知, C_f /Mullite 复合材料的电导率随着 C_f 含量的增多而增大。

极化损耗和电导损耗可以分别由下述公式(4) 和(5)^[35] 描述:

包装学报 PACKAGING JOURNAL 2020年第12巻第6期Vol.12 No.6 Nov. 2020

$$\varepsilon_{p}^{"} = \frac{(\varepsilon_{s} - \varepsilon_{\infty})\omega\tau}{1 + \omega^{2}\tau^{2}}, \qquad (4)$$

$$\varepsilon_{c}^{"} = \frac{\sigma}{\omega \varepsilon_{0}} \circ \tag{5}$$

由图 3e 可知,随着碳纤维含量的增加,C_f/Mullite复合材料的极化损耗和电导损耗也随之增大。

介电损耗角正切(tan $\delta = \epsilon'' / \epsilon'$)可以用于评估电 磁波吸收的能力^[36]。由图 3c 可知,随着 C_f含量增加,C_f/Mullite 复合材料的介电损耗角正切值也随之 增大,这是由于界面极化增强和传导损耗增强所致。 当添加 C_f的体积分数为 1.2% 时,复合材料的介电损 耗角正切值最大为 0.41。这表明 C_f的加入能有效调 节 Mullite 陶瓷的微波损耗能力,从而可通过加入适 量的 C_f 来提高 Mullite 陶瓷的吸波性能。

3.4 C_f/Mullite 复合材料的吸波性能

根据传输线理论,通过计算反射损耗(reflection loss, RL),在 8.2~12.4 GHz 频带内评估 C_f /Mullite 复合材料的电磁波吸收性能。反射损耗可用下述公式 (6)和(7)^[37] 描述。

$$Z_{\rm in} = \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}} \tanh\left(j\frac{2\pi}{c}\sqrt{\mu_{\rm r}\varepsilon_{\rm r}}fd\right),\qquad(6)$$

$$L_{\rm r} = 20 \, \log \left| \frac{Z_{\rm in} - 1}{Z_{\rm in} + 1} \right| \,, \tag{7}$$

式(6)和(7)中: Z_{in}为归一化输入阻抗;

μ_r为复磁导率,非铁磁材料复磁导率为1;

c为电磁波在自由空间的传播速度;

f为电磁波频率;

L_r为反射损耗。

 C_f /Mullite 复合材料厚度 *d*=1.5 mm 时在 X 波段 的反射损耗计算结果如图 4 所示。由图 4 可知,随 着 C_f 的加入,材料的电磁波反射衰减效果逐渐改善, C_f /Mullite 复合材料吸波性能逐渐提高。当 C_f 的体 积分数为 0.8% 时,复合材料只有在高频阶段反射衰 减得到明显改善,其反射损耗最低可达 -18.98 dB, 反射损耗优于 -5 dB 的频宽达到 0.714 GHz,占整个 X 波段的 17%,但吸波效果不理想。当 C_f 的体积分 数为 1.2% 时,其反射损耗为 -2.05~-33.30 dB,反射 损耗优于 -5 dB 的频宽达到 3.675 GHz,占整个 X 波 段的 87.5%,反射损耗优于 -10 dB 的频宽达到 2.205 GHz,占整个 X 波段的 52.5%, C_f /Mullite 复合材料 的吸波性能得到显著改善。

 Fig. 4 Curves of absorbing performance of

 C_f/Mullite composites

 为了获得高效的电磁波吸收性能,材料的输入阻

为」获得高效的电磁波吸收性能,材料的输入阻抗 抗应接近自由空间的输入阻抗,以实现最佳阻抗匹 配,即空气阻抗 Z₀=Z_{in}。这样在空气和材料之间的界 面处产生零反射电磁波,大部分电磁波进入材料内 部,即满足阻抗匹配原则^[38]。通常用下述公式(8) 来表征材料的阻抗匹配^[39]:

$$Z = \left| \frac{Z_{\text{in}}}{Z_0} \right|, \qquad (8)$$

理想状态下,阻抗匹配系数 Z=1。

图 5 为 C_f /Mullite 复合材料的阻抗匹配系数变化曲线。

由图 5 可知,当 C_f 的体积分数为 1.2%,复合 材料厚度为 1.5 mm 时, C_f /Mullite 复合材料具有良 好的阻抗匹配。而碳纤维的体积分数为其他值的 C_f / Mullite 复合材料,其阻抗系数值均远偏离 1,从而具 有较差的阻抗匹配。阻抗匹配差会导致大量电磁波在 表面反射而无法进入材料内部被损耗,从而使材料的 吸波性能较差。

从上述分析得知,当 C_f的体积分数为 1.2% 时能 有效地改善 Mullite 的吸波性能。由式(6)和(7)可知, 材料的厚度也影响材料的吸波性能,因此进一步探究 材料的厚度对其吸波性能的影响。

图 6 为 C_f 的体积分数为 1.2% 的 C_f /Mullite 复合材料(MC1.2)在不同厚度下的吸波性能。由图 6 可知,试样 MC1.2 的反射损耗能力随厚度的增加 先增强后减弱,其在厚度为 1.5 mm 时具有最佳的 吸波性能,反射损耗最低可达 -33.3 dB,反射损耗 优于 -10 dB 的频宽达到 2.205 GHz,占整个 X 波段 的 52.5%。

此外,吸收带宽也通常用来评判材料吸波性能的 优劣,图7为C_f/Mullite复合材料 MC1.2 反射损耗 优于-5dB的吸收带宽随厚度的变化曲线。

图 7 MC1.2 反射损耗优于 -5 dB 的吸收带宽 随厚度的变化曲线

Fig. 7 MC1.2 reflection loss better than -5 dB absorption bandwidth curve with thickness

由图 7 可知,当厚度小于 1.0 mm 时,复合材料的吸波性能较差,反射损耗在整个 X 波段没有超过-5 dB。当厚度为 1.0~2.5 mm 时,吸收带宽增加,厚度

为 1.5 mm 时, 吸收带宽达到最大为 3.675 GHz, 占 整个波段的 87.5%; 厚度为 2.0 mm 时, 吸收带宽为 2.33 GHz, 占整个波段的 55.5%。当厚度为 2.5~3.5 mm 时, 复合材料的吸波性能变差,反射损耗没有超 过 ~5 dB。当厚度为 4 mm 时,复合材料的吸收宽带 为 1.050 GHz, 占整个波段的 25%。当厚度 4.5~5.0 mm 时,复合材料的吸波性能再次变差,反射损耗没 有超过 ~5 dB。

 C_{f} /Mullite 复合材料的吸波性能比纯 Mullite 显著提高,主要有以下几个原因:

1) C_f 在材料内部形成导电网络,提高了复合材料的电导率^[40]。在导电网络中,电子等载流子可以自由移动,与入射的电磁辐射相互作用,以热的形式耗散电磁能量^[41]。

2) C_f与 Mullite 基体界面的大量偶极子和积累 电荷,在电磁场的作用下产生极化耗散电流,耗散 电流在材料内部衰减,使电磁波能量以热损耗的形 式耗散^[41]。

3)厚度是影响 C_f /Mullite 复合材料吸波性能的 关键因素之一,适当的厚度可以充分发挥材料对电 磁波的半波损耗效应^[42]。C_f /Mullite 复合材料在厚度 为 1.0~2.5 mm 范围内,除了碳纤维电导损耗和界面 间的极化损耗之外,半波损耗效应进一步拓宽了吸收 带宽,提高了电磁波的吸收性能。

 C_f /Mullite 复合材料的吸波机制如图 8 所示。

○ 电导损耗; ○ 极化损耗; ----> multiply reflection

图 8 C_f /mullite 复合材料的电磁波吸收机制

将所制备的 C_f /Mullite 复合材料与具有代表性的 陶瓷基复合材料进行了电磁波吸收性能的比较,结果 如表 2 所示。

由表 2 可知,与文献 [43] 中的复合材料相比, 本研究中 C_f体积分数为 1.2% 的 C_f /Mullite 复合材料 (MC1.2)的反射损耗相近,但厚度明显降低;与文 献 [45] 中的复合材料相比,本研究的 MC1.2 具有更 宽的吸收频宽。 ● 包装学报 PACKAGING JOURNAL 2020年第12巻第6期Vol.12 No. 6 Nov. 2020

表 2 代表性陶瓷基复合材料在 X 波段的电磁波吸收情况

 Table 2
 Electromagnetic wave absorption of ceramic
 matrix composites at X band

样	日田	填充物	基体	厚度 /	反射	吸收	参考
				mm	损耗 / dB	频宽 /GHz	文献
CNTs/S	SiBCN	CNTs	SiBCN	3.0	-32.0	3.0	[43]
SiC _f /Mullite	SiC _f SiC Mullit	Mullite	3.5	-53.0	2.1	[44]	
	Ti ₃ SiC ₂	Withite				ניין	
SiC _f /N	Aullite	SiC_{f}	Mullite	2.9	-38.0	1.4	[45]
$C_{\rm f}/M$	ullite	$C_{\rm f}$	Mullite	1.5	-33.3	2.2	本文

结论 4

本文采用模压法和固相烧结法制备了 C_f /Mullite 复合材料,并对其介电性能和吸波性能进行了研究, 可得如下主要结论:

1)碳纤维加入莫来石陶瓷, 使 C_f /Mullite 复合 材料的复介电常数实部和虚部显著提高,并增强了界 面极化损耗和电导损耗,从而增强了 C_f /Mullite 复合 材料的电磁波损耗能力,明显改善了其在 X 波段的 吸波性能。

2) 当添加 C_f 的体积分数为 1.2% 时, C_f /Mullite 复合材料的吸波最佳厚度为1.5 mm,反射损耗最大 值达到-33.3 dB, 优于-5 dB 的吸收带宽达 3.675 GHz, 占整个 X 波段的 87.5%。若进一步优化 C_f/ Mullite 复合材料的性能,其有望作为优异的吸波材 料应用于高温吸波领域。

参考文献:

- [1] TADJARODI A, RAHIMI R, IMANI M, et al. Synthesis, Characterization and Microwave Absorbing Properties of the Novel Ferrite Nanocomposites[J]. Journal of Alloys and Compounds, 2012, 542: 43-50.
- [2] LIU P B, HUANG Y, YAN J, et al. Magnetic Graphene@PANI@Porous TiO2 Ternary Composites for High-Performance Electromagnetic Wave Absorption[J]. Journal of Materials Chemistry C, 2016, 4(26): 6362-6370.
- [3] ZHAO T K, HOU C L, ZHANG H Y, et al. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes[J]. Scientific Reports, 2015, 4: 5619.
- [4] KUMAR S, CHATTERJEE R. Complex Permittivity, Permeability, Magnetic and Microwave Absorbing Properties of Bi³⁺ Substituted U-Type Hexaferrite[J].

Journal of Magnetism and Magnetic Materials, 2018, 448: 88-93.

- [5] SUN C, SUN K N, CHUI P F. Microwave Absorption Properties of Ce-Substituted M-Type Barium Ferrite[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 802-805.
- [6] ZHANG X M, JI G B, LIU W, et al. Thermal Conversion of an Fe₃O₄ @Metal-Organic Framework: A New Method for an Efficient Fe-Co/Nanoporous Carbon Microwave Absorbing Material[J]. Nanoscale, 2015, 7(30): 12932-12942.
- [7] LIYJ, YUAN MW, LIUHH, et al. In Situ Synthesis of CoFe₂O₄ Nanocrystals Decorated in Mesoporous Carbon Nanofibers with Enhanced Electromagnetic Performance[J]. Journal of Alloys and Compounds, 2020, 826: 154147.
- [8] SU X G, WANG J, ZHANG X X, et al. One-Sep Preparation of CoFe₂O₄/FeCo/Graphite Nanosheets Hybrid Composites with Tunable Microwave Absorption Performance[J]. Ceramics International, 2020, 46(8): 12353-12363.
- [9] JIAZR, LINKJ, WUGL, et al. Recent Progresses of High-Temperature Microwave-Absorbing Materials[J]. Nano, 2018, 13(6): 1830005.
- [10] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam[J]. Advanced Materials, 2015, 27(12): 2049-2053.
- [11] CHEN Y H, HUANG Z H, LU M M, et al. 3D Fe₃O₄ Nanocrystals Decorating Carbon Nanotubes to Tune Electromagnetic Properties and Enhance Microwave Absorption Capacity[J]. Journal of Materials Chemistry A, 2015, 3(24): 12621-12625.
- [12] KAUR P, CHAWLA S K, NARANG S B, et al. Structural, Magnetic and Microwave Absorption Behavior of Co-Zr Substituted Strontium Hexaferrites Prepared Using Tartaric Acid Fuel for Electromagnetic Interference Suppression[J]. Journal of Magnetism and Magnetic Materials, 2017, 422: 304-314.
- [13] ZHAO H, ZHU Z H, XIONG C, et al. The Influence of Different Ni Contents on the Radar Absorbing Properties of FeNi Nano Powders[J]. RSC Advances, 2016, 6(20): 16413-16418.
- [14] LIU T, PANG Y, XIE X B, et al. Synthesis of Microporous Ni/NiO Nanoparticles with Enhanced Microwave Absorption Properties[J]. Journal of Alloys and Compounds, 2016, 667: 287-296.

- [15] JIANG J J, LI D, GENG D Y, et al. Microwave Absorption Properties of Core Double-Shell FeCo/C/ BaTiO₃ Nanocomposites[J]. Nanoscale, 2014, 6(8): 3967–3971.
- [16] TIAN C H, DU Y C, XU P, et al. Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness Toward Enhancement in Microwave Absorption[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20090–20099.
- [17] LI Q, YIN X W, ZHANG L T, et al. Effects of SiC Fibers on Microwave Absorption and Electromagnetic Interference Shielding Properties of SiC_f /SiCN Composites[J]. Ceramics International, 2016, 42(16): 19237–19244.
- [18] GE P H, SUN K N, LI A M, et al. Improving the Electrical and Microwave Absorbing Properties of Si₃N₄ Ceramics with Carbon Nanotube Fibers[J]. Ceramics International, 2018, 44(3): 2727–2731.
- [19] MO R, YIN X W, YE F, et al. Electromagnetic Wave Absorption and Mechanical Properties of Silicon Carbide Fibers Reinforced Silicon Nitride Matrix Composites[J]. Journal of the European Ceramic Society, 2019, 39(4): 743-754.
- [20] SACKS M D, WANG K Y, SCHEIFFELE G W, et al. Effect of Composition on Mullitization Behavior of α-Alumina/Silica Microcomposite Powders[J]. Journal of the American Ceramic Society, 1997, 80(3): 663–672.
- [21] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and Properties of Mullite: A Review[J]. Journal of the European Ceramic Society, 2008, 28(2): 329-344.
- [22] WANG Y, CHENG H F, WANG J. Mechanical and Dielectric Properties of Mullite Fiber-Reinforced Mullite Matrix Composites with Single Layer CVD SiC Interphases[J]. International Journal of Applied Ceramic Technology, 2015, 12(3): 500–509.
- [23] ZHOU L, ZHOU W C, SU J B, et al. Effect of Composition and Annealing on the Dielectric Properties of ZnO/Mullite Composite Coatings[J]. Ceramics International, 2012, 38(2): 1077-1083.
- [24] CAO M S, SONG W L, HOU Z L, et al. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites[J]. Carbon, 2010, 48(3): 788-796.
- [25] DE ROSA I M, DINESCU A, SARASINI F, et al. Effect of Short Carbon Fibers and MWCNTS on Microwave Absorbing Properties of Polyester Composites

Containing Nickel-Coated Carbon Fibers[J]. Composites Science and Technology, 2010, 70(1): 102–109.

- [26] XIE W, CHENG H F, CHU Z Y, et al. Microwave Absorbing Properties of Short Hollow Carbon Fiber Composites[J]. Journal of Inorganic Materials, 2008, 23(3): 481-485.
- [27] LONG L, XIAO P, LUO H, et al. Enhanced Electromagnetic Shielding Property of C_f /Mullite Composites Fabricated by Spark Plasma Sintering[J]. Ceramics International, 2019, 45(15): 18988–18993.
- [28] 张东明. 陶瓷材料脉冲电流烧结机理的研究 [D]. 武汉: 武汉理工大学, 2002.
 ZHANG Dongming. Study on Mechanism of Pulse Electric Current Sintering of Ceramic Materials[D].
 Wuhan: Wuhan University of Technology, 2002.
- [29] BOURBIGOT S, FLAMBARD X. Heat Resistance and Flammability of High Performance Fibres: A Review[J]. Fire and Materials, 2002, 26(4/5): 155–168.
- [30] SHE J H, MECHNICH P, SCHMÜCKER M, et al. Reaction-Bonding Behavior of Mullite Ceramics with Y₂O₃ Addition[J]. Journal of the European Ceramic Society, 2002, 22(3): 323–328.
- [31] WANG K, HUANG Y, WANG M Y, et al. PVD Amorphous Carbon Coated 3D NiCo₂O₄ on Carbon Cloth as Flexible Electrode for both Sodium and Lithium Storage[J]. Carbon, 2017, 125: 375–383.
- [32] PETROV V M, GAGULIN V V. Microwave Absorbing Materials[J]. Inorganic Materials, 2001, 37(2): 93–98.
- [33] 周 伟,肖 鹏,李 杨,等. BN/SiC复合涂层改 性炭纤维的吸波性能研究[J]. 无机材料学报, 2014, 29(10): 1093-1098.
 ZHOU Wei, XIAO Peng, LI Yang, et al. Microwave Absorbing Properties of Carbon Fibers Modified with BN/SiC Composite Coatings[J]. Journal of Inorganic Materials, 2014, 29(10): 1093-1098.
- [34] CHEN X G, L ÜS S, ZHANG P P, et al. Fabrication and Electromagnetic Performance of Micro-Tubular Nanocomposites Composed of Monodisperse Iron Nanoparticles and Carbon[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(9): 1745–1751.
- [35] MAJDZADEH-ARDAKANI K, BANASZAK HOLL M M. Nanostructured Materials for Microwave Receptors[J]. Progress in Materials Science, 2017, 87: 221–245.
- [36] DAI J J, YANG H B, WEN B, et al. Flower-like MoS₂@Bi₂Fe₄O₉ Microspheres with Hierarchical Structure as Electromagnetic Wave Absorber[J]. Applied Surface Science, 2019, 479: 1226–1235.
- [37] CHE R C, PENG L M, DUAN X, et al. Microwave

● 2 装 学 报 PACKAGING JOURNAL 2020 年第12 巻第6期 Vol. 12 No. 6 Nov. 2020

Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated Within Carbon Nanotubes[J]. Advanced Materials, 2004, 16(5): 401-405.

- [38] 成来飞, 莫 然, 殷小玮, 等. 吸波结构型陶瓷基复 合材料 [J]. 硅酸盐学报, 2017, 45(12): 1738-1747. CHENG Laifei, MO Ran, YIN Xiaowei, et al. Wave-Absorbing Structural Ceramic Matrix Composites[J]. Journal of the Chinese Ceramic Society, 2017, 45(12): 1738-1747.
- [39] HUANG H, GAO Y, FANG C F, et al. Spray Granulation of Fe and C Nanoparticles and Their Impedance Match for Microwave Absorption[J]. Journal of Materials Science & Technology, 2018, 34(3): 496-502.
- [40] HE J Z, WANG X X, ZHANG Y L, et al. Small Magnetic Nanoparticles Decorating Reduced Graphene Oxides to Tune the Electromagnetic Attenuation Capacity[J]. Journal of Materials Chemistry C, 2016, 4(29): 7130-7140.
- [41] MONDAL S, GANGULY S, DAS P, et al. Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-Structured Carbon Based Ethylene

Methyl Acrylate Nanocomposites[J]. Composites Part B: Engineering, 2017, 119: 41-56.

- [42] CAO M S, YUAN J, LIU H, et al. A Simulation of the Quasi-Standing Wave and Generalized Half-Wave Loss of Electromagnetic Wave in Non-Ideal Media[J]. Materials and Design, 2003, (24): 31-35.
- [43] ZHANG Y J, YIN X W, YE F, et al. Effects of Multi-Walled Carbon Nanotubes on the Crystallization Behavior of PDCs-SiBCN and Their Improved Dielectric and EM Absorbing Properties[J]. Journal of the European Ceramic Society, 2014, 34(5): 1053-1061.
- [44] GAO H, LUO F, NAN H Y, et al. Improved Mechanical and Microwave Absorption Properties of SiC Fiber/Mullite Matrix Composite Using Hybrid SiC/ Ti₃SiC₂ Fillers[J]. Journal of Alloys and Compounds, 2019, 791: 51-59.
- [45] GAO H, LUO F, WEN Q L, et al. Effect of Preparation Conditions on Mechanical, Dielectric and Microwave Absorption Properties of SiC Fiber/Mullite Matrix Composite[J]. Ceramics International, 2019, 45(9): 11625-11632.

(责任编辑:邓光辉)

Study of the Dielectric Properties and Microwave Absorbing Properties of Carbon Fiber Reinforced Mullite Ceramics

PI Weiqiang, ZHOU Wei, CHEN Maolin, YIN Ruiming

(College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract: The carbon fiber/mullite composites (C_f /Mullite) were prepared through compression molding process and solid-phase reaction sintering. The phase composition and microstructure of $C_{\rm f}$ /Mullite composites were characterized, and the influence of carbon fiber(C_f) content on the dielectric properties and microwave absorption properties of Mullite (3Al₂O₃•2SiO₂) ceramics in the X band (8.2~12.4 GHz) was investigated by using a vector network analyzer. The results showed that Al₂O₃ and SiO₂ fully reacted to produce Mullite ceramics at high temperature, and C_f /Mullite composites ceramics had a relatively dense structure. The dielectric constant and dielectric loss tangent $(\tan \delta)$ of C_f/Mullite composites increased with the increase of fiber addition, and mullite ceramics exhibited better electromagnetic wave absorption capacity by adding C_f When the C_f content was 1.2% (volume fraction) and C_f /Mullite composites thickness d=1.5 mm, the maximum absorption peak of reflection loss was -33.3 dB and the absorption bandwidth of reflection loss better than -5 dB reached 3.675 GHz, while the absorption bandwidth of reflection loss better than -10 dB reached 2.205 GHz. The addition of C_f obviously improved the electromagnetic wave absorption performance of mullite ceramics.

Keywords: carbon fiber; C_f /Mullite; dielectric property; wave absorbing property