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p(Z|T)=g(X), (11)
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Visual Tracking Based on Online Learning of Discriminant Dictionaries

SI'Yuan', ZHU Wengqiu"

(1. College of Computer, Hunan University of Technology, Zhuzhou Hunan 412007, China; 2. Key Laboratory of Intelligent
Information on Perception and Processing Techonology, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: A tracking algorithm based on online learning of discriminant dictionary has been proposed, which
combines dictionary items with label information, thus making the discriminant dictionary both reconstructive
and discriminant. In order to enhance the discriminant ability of the model, the classifier is embedded in the target
representation model, with its candidate target to be determined according to the reconstruction error and discriminant
classification score. The online dictionary learning algorithm is used to update both the dictionary and the classifier in
the process of learning, so that the model can adapt to the dynamic changes of the target appearance and background
environment. The experimental results show that the proposed method achieves satisfactory results in most of such tests
concerning large occlusion, fast motion, strong light and attitude change.

Keywords: sparse coding; label information; dictionary learning; discriminant classification
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