doi:10.3969/j.issn.1674-7100.2013.03.002

Co²⁺掺杂水溶性 ZnS 量子点的 制备及其光致发光性能

颜爱国,薛继武,冯起芹,石 亮,王建龙

(湖南工业大学 包装新材料与技术重点实验室,湖南 株洲 412007)

摘 要:采用共沉淀法,以3-巯基丙酸为表面修饰剂,成功制备出 Co^{2+} 掺杂水溶性ZnS量子点。采用 X 射线衍射仪、透射电子显微镜、原子发射光谱仪、紫外-可见吸收光谱仪和荧光分光光度计等,研究了 Co^{2+} 掺杂剂及掺杂量对ZnS量子点的晶体结构、形貌和发光性能等的影响。结果表明:所得产物均为ZnS立 方型闪锌矿结构,量子点呈不规则球形,粒径主要集中在5.2 nm 左右;掺杂样品发红色荧光,发光性能明显 增强,属于 Co^{2+} 形成的杂质能级($^{4}A_{1}$ — $^{4}T_{1}$)与缺陷的复合发光。同时,利用红外吸收光谱对 Co^{2+} 掺杂水溶 性ZnS量子点的形成机理进行了初步探讨。

关键词: Co²⁺掺杂;水溶性; ZnS 量子点;光致发光性能 中图分类号: TG146.1⁺3 文献标志码: A 文章编号: 1674-7100(2013)03-0005-05

Preparation and Photoluminescence Properties of Co²⁺-Doped Water-Soluble ZnS Quantum Dots

Yan Aiguo, Xue Jiwu, Feng Qiqin, Shi Liang, Wang Jianlong

(Key Laboratory of Packaging New Material and Technology, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract: Using 3-Mercaptopropionic acid(MPA) as surface coated agent, Co^{2+} -doped water-soluble quantum dots of ZnS were synthesized by co-precipitation method. The effects of Co^{2+} dopant and doping amount on microstructure, morphology and photoluminescence properties of the As-products were researched by X-ray diffraction, transmission electron microscopy, UV-visible absorption spectrometer and fluorescence spectrophotometer. The results show that the products were irregular spherical cubic zinc blender ZnS with sizes around 5.2 nm. Photoluminescence spectra analysis shows that Co^{2+} -doped ZnS quantum dots formed a recombination centers with impurity level and defect, the luminescent properties of the doped products are increased obviously by emitting red fluorescence. The synthesis mechanism of Co^{2+} -doped ZnS quantum dots was studied by infrared spectroscopy.

Key words: Co²⁺-doped; water-soluble; ZnS quantum dots; photoluminescence

收稿日期:2013-02-29

基金项目:中国博士后基金资助项目(20110491263),湖南省博士后基金资助项目(2011RS4056),湖南省自然科学基金资助项目(12JJ6049),湖南省教育厅平台基金资助项目(11K022),湖南工业大学自然科学基金资助项目(2011hzx01),湖南工业大学研究生创新基金资助项目(CX1206),湖南省研究生科研创新基金资助项目(CX2012B402)

作者简介:颜爱国(1972-),男,江西萍乡人,湖南工业大学副教授,博士,主要从事新型包装材料的制备及功能化方面的 教学与研究,E-mail: yanaiguod4@163.com

0 引言

ZnS是Ⅱ-Ⅵ族宽禁带半导体化合物材料,具有 良好的荧光效应和光致发光功能,使其成为制备半 导体发光器件和光纤通讯等的理想材料[1-2], 而一维 ZnS 纳米材料因表现出异于体相材料的特殊性质, 在制备纳米光电子器件、生物传感和生物标记等领 域显示出广阔的应用前景[3-5]。近年来,纯ZnS纳米 材料因具有发光波长范围有限、发光稳定性能较差 及发光强度较低等缺点,阻碍了其进一步的研究应 用,但随着掺杂ZnS纳米材料研究的逐渐深入,这 一问题得到了有效解决。目前,国内外已研发出多 种制备掺杂 ZnS纳米材料的方法,如 Wang Xiniuan等 人间以乙醇胺、乙二胺和水为反应溶剂,采用溶剂热 法,成功合成了直径较小的 Mn²⁺ 掺杂 ZnS 纳米棒; A. Tiwari 等人印以醋酸钠为保护剂,采用微乳液法, 成功合成粒径可控的 Cu²⁺掺杂 ZnS 量子点。但用这 些方法制备的掺杂 ZnS 量子点大都是非水溶性的, 必须经过表面修饰才能适用于生物传感、生物标记 和环境检测等水相领域。因此,合成水溶性的掺杂 ZnS 量子点成为该领域的研究热点。

目前,水溶性阳离子掺杂 ZnS 纳米材料的研究 以 Mn²⁺, Cu²⁺, Ga³⁺和 Al³⁺等离子为主^[8-11],而 Co²⁺离 子是一种典型的过渡金属元素,具有丰富的电子壳 层结构。因此,为了进一步研究掺杂 ZnS 纳米材料 的潜在性能,有必要对其进行不同阳离子掺杂的研 究尝试。本文以乙酸锌、乙酸钴和硫化钠为原料,以 3- 巯基丙酸为表面修饰剂,利用共沉淀法,成功制 备了一种水溶性 Co²⁺掺杂 ZnS 量子点光致发光材料, 并分析了 Co²⁺掺杂剂及掺杂量对 ZnS 量子点结构、形 貌和发光性能的影响,同时利用红外光谱对 Co²⁺掺 杂 ZnS 量子点的形成机理进行了初步探讨。

1 试验

1.1 试剂与仪器

乙酸锌Zn(Ac)₂·2H₂O、乙酸钴Co(Ac)₂·4H₂O、3-巯基丙酸HSCH₂CH₂COOH(3-mercaptopro-pionic, MPA)、硫化钠Na₂S·9H₂O、无水乙醇,均为分析纯, 上海晶纯实业有限公司生产;试验用水为自制的二 次去离子水。

X射线衍射仪(X-ray diffraction, XRD), D-8X型, 德国 Bruker公司生产;透射电子显微镜(transmission electron microscope, TEM), JEM-200CX型, 日本JEOL 公司生产;电感耦合等离子体原子发射光谱仪, FS-6型,美国 Baird 公司生产;紫外可见分光光度计, Lambda 950型,美国 Perkin Emler 公司生产;荧光分 光光度计,F-4500型,日本日立公司生产;傅里叶 红外光谱仪,N-380型,美国 Nicolet 公司生产。

1.2 纯 ZnS 及 Co²⁺ 掺杂 ZnS 量子点的合成与表征

ZnS 量子点采用共沉淀法制备:在 60 ℃反应温 度下,向 500 mL 三颈烧瓶中分别加入 20 mL 浓度为 0.1 mol·L⁻¹的乙酸锌溶液和10.0 mmol的3-巯基丙酸, 加去离子水稀释到 300 mL,搅拌 20 min;然后,用浓 度为1.0 mol·L⁻¹的氢氧化钠溶液调节溶液 pH值为12, 继续搅拌30 min;其后,向反应溶液中缓慢滴加20 mL 浓度为 0.1 mol·L⁻¹的硫化钠溶液,将反应体系加热 到 120 ℃,反应 5 h,即可得到无色 ZnS 量子点的水 溶胶;最后,在 ZnS 水溶胶中加入 150 mL 无水乙醇 使其沉淀出来,离心分离,除去上层清液,所得白 色沉淀用无水乙醇清洗 2 次,再将所制产物在 50 ℃ 条件下真空干燥 10 h,即得到 ZnS 量子点发光材料粉 末样品。

为了得到 Co²⁺ 掺杂 ZnS 量子点样品,将一定量 的乙酸钴加入乙酸锌溶液中并分散均匀,其余过程 与制备 ZnS 量子点相同。

采用 XRD 分析样品的物相结构,采用 TEM 观察 样品的尺寸和形貌,采用电感耦合等离子体原子发 射光谱仪检测样品的化学组成,采用紫外可见分光 光度计和荧光分光光度计测定样品的光致发光性能, 采用傅里叶红外光谱仪分析样品的形成机理。

2 结果与讨论

2.1 Co²⁺ 掺杂 ZnS 量子点的结构表征

图 1 为纯 ZnS 和 4% (摩尔分数) Co²⁺掺杂 ZnS 量 子点的 XRD 图。

Fig. 1 XRD patterns of pure ZnS and Co²⁺-doped ZnS quantum dots with 4% concentrations

从图1中可以看出,纯ZnS及掺杂ZnS量子点的

XRD 图中均出现了 3 个主要衍射峰,分别对应于 ZnS 的(111),(210)和(311) 3 个晶面,通过与JCPDS(NO.05-0566)标准卡片对照,可确认试验所得产物均为 ZnS 立方型闪锌矿结构,表明微量的 Co²⁺掺杂不会对 ZnS 量子点的物相产生影响。

另外,对照纯ZnS和掺杂ZnS量子点的X射线衍射 峰可知,掺杂ZnS的(111)晶面峰位 $2\theta(2\theta \approx 28.485^{\circ})$ 与 纯ZnS的(111)晶面峰位 $2\theta(2\theta \approx 28.461^{\circ})$ 相比,其峰位 向低角度方向移动了 0.024° 。这是由于 Co^{2+} 的半径 (0.058 nm)略小于Zn²⁺的半径(0.060 nm)¹¹²¹,当Co²⁺ 取代ZnS晶格中Zn²⁺的位置时,ZnS晶格中的晶面间 距变小,其衍射角向低角度方向移动。由此可知, Co²⁺对ZnS样品的掺杂是以Co²⁺取代Zn²⁺位置的方 式进入ZnS晶格内部。此外,从图1中还可以看到, 掺杂ZnS量子点的(311)晶面衍射峰明显强于纯ZnS量 子点,这表明Co²⁺掺杂能够增强ZnS量子点的结晶 效果。利用Scherrer方程,依据纯ZnS和Co²⁺掺杂ZnS 量子点的(111)晶面,对其粒径进行估算,粒径大小分 别约为4.8 nm和5.2 nm^[13]。

图 2 为纯 ZnS 和 4% (摩尔分数) Co²⁺掺杂 ZnS 量 子点的 TEM 图。

b) 掺杂 ZnS 量子点

图 2 纯 ZnS 和 4%(摩尔分数)Co²⁺掺杂 ZnS 量子点的 TEM 图

Fig. 2 TEM patterns of pure ZnS and Co²⁺-doped ZnS quantum dots with 4% concentrations

由图2可知,纯ZnS量子点的形状呈不规则球形, 颗粒之间有一些团聚,这主要是因溶剂挥发而造成, 样品的粒径主要集中在4.8 nm左右; Co²⁺掺杂ZnS量 子点的形状与纯ZnS量子点相似,也呈不规则球形, 其粒径主要集中在5.2 nm左右,粒径略有增大,与 XRD分析的结果基本一致。

图 3 为 4% (摩尔分数) Co²⁺ 掺杂 ZnS 量子点的 能谱图。从图中可以看出,所得掺杂样品的能谱中 含有 Zn,S 和 Co 等元素,其中,Zn 与 S 元素的比例 接近 1:1,且掺入的微量 Co 元素也呈现出明显的峰 值,表明反应体系中大量的 Co²⁺ 参与了 ZnS 量子点 的形成过程,说明所得样品为 Co²⁺ 掺杂 ZnS 量子点。 此外,掺杂样品的能谱中还出现了 C,O,Si和 Cu 4 种 元素,其中O元素和部分C元素可能是由掺杂样品 表面修饰的MPA引起,而承载样品的薄膜则会导致 Cu,Si和C元素的出现。

图 3 4% (摩尔分数) Co²⁺ 掺杂 ZnS 量子点的能谱图 Fig. 3 EDS patterns of Co²⁺-doped ZnS quantum dots with 4% concentrations

2.2 Co²⁺ 掺杂 ZnS 量子点的光学性质

由于量子点具有明显的量子尺寸效应,其粒径 变化一般可以通过紫外吸收光谱进行表征。图4为纯 ZnS和4%(摩尔分数)Co²⁺掺杂ZnS量子点的紫外-可见吸收光谱图。

图 4 纯 ZnS 和 4% (摩尔分数) Co²⁺ 掺杂 ZnS 量子点的紫外 – 可见吸收光谱图

从图 4 可以看出,纯 ZnS 量子点的紫外吸收带位 于 210~330 nm 之间,而 Co²⁺ 掺杂 ZnS 量子点的紫外 吸收带则位于 225~330 nm 之间,掺杂样品的右吸收 带边相对纯 ZnS 样品发生轻微的红移,表明其粒径 略有增大。与体相 ZnS 材料位于 340 nm 的吸收带相 比,掺杂和纯 ZnS 量子点的吸收带均发生了蓝移,表 明具有显著的量子尺寸效应。

图 5 为纯 ZnS 和 4% (摩尔分数) Co²⁺掺杂 ZnS 量 子点的光致发光图。

由图 5 可知,纯 ZnS 和掺杂 ZnS 样品的发射光谱 均为单峰发射,发射峰较窄,且没有其他杂峰出现, 表明合成的样品纯度均较高。当用 320 nm 的紫外光 激发纯 ZnS 量子点时,其发射波峰位于 587 nm 处,样 品发黄色荧光,但发光强度较弱,属于 ZnS 量子点 表面 S 空位缺陷发射峰[14]。当用相同波长的紫外光 激发4%(摩尔分数)Co²⁺掺杂ZnS量子点时,其发 射波峰位于 728 nm 处, 样品发红色荧光, 且发光强 度明显增强。S. Sambasivam 等人[15]研究发现, Co²⁺的 ⁴A, 一⁴T, 能级发射峰位于 714 nm 左右。为了解释掺 杂样品发射峰位红移的原因,基于 T.Y. Tsai 等人[16] 的研究成果,本研究组对 Co²⁺ 掺杂 ZnS 量子点的发 光机理解释如下: Co²⁺的掺杂在 ZnS 给体能级上形成 杂质能级(⁴A₁一⁴T₁),其与ZnS量子点表面的S空位 缺陷复合,形成杂质能级与缺陷的复合发光中心,从 而导致掺杂样品的发射峰位红移且发光强度增大。

为了进一步了解 Co^{2+} 掺杂对 ZnS 量子点发光性 能的影响,利用原子发射光谱(inductive coupled plasma, ICP)对 Co^{2+} 的实际掺杂量进行了研究,结 果如表 1 所示。

表 1 不同 Co²⁺ 掺杂量下 ZnS 量子点的 ICP 检测结果 Table 1 ICP test results of Co²⁺-doped ZnS quantum dots at different concentrations of Co²⁺

Co ²⁺	Co 元素	Zn 元素	Co/Zn 原子	Co的相对
掺杂量 /%	质量比/%	质量比/%	个数比/%	掺入率/%
1	0.24	30.97	0.86	86.00
2	0.43	27.87	1.71	85.50
3	0.81	32.09	2.80	93.32
4	1.30	42.74	3.37	84.25
5	1.33	34.33	3.62	72.40

从表1可以看出,在Co²⁺掺杂量从1%增至4%时,Co/Zn原子个数比逐渐增大,且Co²⁺的相对掺入率均在84%以上,这表明Co²⁺的掺入率较高,大多

数 Co^{2+} 进入 ZnS 量子点晶格内部;当 Co^{2+} 掺杂量进 一步增至 5% 时, Co^{2+} 的相对掺入率则略显降低,这 可能是因过量的 Co^{2+} 掺杂,形成 $Co^{2+}-Co^{2+}$ 离子簇, 从而使 Co^{2+} 的相对掺入率降低。

图 6 所示为不同 Co²⁺掺杂量下 ZnS 量子点的光致 发光图。

从图 6 中可以看出,在 Co²⁺ 掺杂量为 1%(摩尔 分数)时,掺杂 ZnS 样品的相对发光强度为 983,随 着 Co²⁺掺杂量依次增至 2%,3% 和 4% 时,掺杂 ZnS 样 品的相对发光强度从 983 逐渐升至 1 622,发光强度 明显增大,这是因为随着 Co²⁺掺杂量的增加,复合 发光中心逐渐增多,从而使其发光强度明显增大。当 Co²⁺掺杂量进一步增至 5% 时,发光强度则降低,这 可能是因为过量的 Co²⁺掺杂,形成 Co²⁺-Co²⁺离子簇, 引发掺杂离子间发射能量漂移,从而导致量子点发 光强度降低。因此,对于 Co²⁺掺杂 ZnS 量子点, Co²⁺ 的最佳掺杂量为 4%(摩尔分数)。

2.3 Co²⁺ 掺杂 ZnS 量子点的形成机理

关于 Co^{2+} 掺杂 ZnS 量子点的形成机理的探讨,本 研究组对掺杂样品进行了 MPA 表面修饰和未经表面 修饰的红外光谱表征,结果如图 7 所示。从图中曲线 a 可以看出,未经 MPA 修饰的 Co^{2+} 掺杂 ZnS 量子点, 其在 500~4 000 cm⁻¹范围内曲线较光滑,表明其具有 明显的红外透过性能。从曲线 b 可以看出, MPA 修 饰的 Co^{2+} 掺杂 ZnS 量子点在 673 cm⁻¹ 处出现了 C - S 基的吸收峰,而没有在 2 550~2 600 cm⁻¹范围内出现巯 基 (- SH) 的特征吸收峰,这表明 MPA 分子中的巯 基与样品的 Zn^{2+} 发生了配位作用。此外,图 7 曲线 b 中,出现 2 个较强的吸收峰,可分别归属于羰基 (C=O)的对称伸缩振动($\nu_{s}=1$ 401 cm⁻¹)和反对称 伸缩振动($\nu_{as}=1$ 561 cm⁻¹), $\Delta\nu=160$ cm⁻¹,这说明MPA 与 Zn^{2+} 是单离子配位^[17]。从曲线 b 中还可以看到,样 品在 3 372 cm⁻¹ 附近出现了 1 个较宽的吸收峰,这是 MPA 分子中羟基(一OH)的特征吸收峰,表明 MPA 修饰的 Co²⁺ 掺杂 ZnS 量子点被成功合成。

红外光谱图

Fig. 7 The IR patterns of Co²⁺-doped ZnS quantumdots with MPA-modified and without MPA-modified

3 结论

本文采用共沉淀法,成功合成了一种粒径为 5.2 nm 左右的 Co²⁺ 掺杂水溶性 ZnS 量子点。

由 XRD 表征可知, Co²⁺ 是以取代 Zn²⁺ 的方式进入 ZnS 晶格内部, 微量的 Co²⁺ 掺杂并未对 ZnS 量子 点的物相产生影响, 所得产物均为 ZnS 立方型闪锌 矿结构。

TEM分析表明,所得样品形貌呈不规则球形,颗 粒较均匀,粒径主要集中在5.2 nm 左右。

发射光谱分析表明, Co^{2+} 掺杂ZnS量子点发红色 荧光,属于 Co^{2+} 杂质能级(${}^{4}A_{1}$ — ${}^{4}T_{1}$)与缺陷的复合 发光,在 Co^{2+} 掺杂量为4%(摩尔分数)时,掺杂ZnS量子点发光强度最大。

红外吸收光谱分析表明, MPA 被成功修饰在 Co²⁺掺杂 ZnS 量子点表面, 使其具有较好的水溶性。

参考文献:

- Kar Soumitra, Biswas Subhajit, Chandhuri Subhadra. Catalytic Growth and Photoluminescence Properties of ZnS Nanowires[J]. Nanotechnology, 2005, 16(6): 737–740.
- [2] Bema Dina, Freivalds T, Buikis I, et al. Microcells Development and Endocytosis Ability Morphological and Quantitative Characterization in Hela Cancer Cells[J]. Springer Link, 2008, 20(10): 598-601.
- [3] Clarke S J, Hollmann C A, Aldaye F A, et al. Effect of Ligand Density on the Spectral, Physical, and Biological Characteristics of CdSe/Zns Quantum Dots[J]. Bioconjugate Chemistry, 2008, 19(2): 562–568.
- [4] Feigl C, Russo S P, Barnard A S. Safe, Stable and Effective

Nanotechnology: Phase Mapping of ZnS Nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(24): 4971–4980.

- [5] Chatterjee A, Priyam A, Ghosh D, et al. Interaction of ZnS Nanoparticles with Flavins and Glucose Oxidase: A Fluorimetric Investigation[J]. Journal of Luminescence, 2012, 132(3): 545-549.
- [6] Wang Xinjuan, Zhang Qinglin, Zou Bingsuo, et al. Synthesis of Mn-Doped ZnS Architectures in Ternary Solution and Their Optical Properties[J]. Applied Surface Science, 2011, 257(24): 10898-10902.
- [7] Tiwari A, Khan S A, Kher R S. Synthesis, Surface Characterization and Optical Properties of 3-Thiopropionic Acid Capped ZnS: Cu Nanocrystals[J]. Bulletin of Materials Science, 2011, 34(5): 1077-1081.
- [8] Chandra B P, Xu C N, Yamada H, et al. Luminescence Induced by Elastic Deformation of ZnS: Mn Nanoparticles [J]. Journal of Luminescence, 2010, 130 (3): 442–450.
- [9] Kuppayee M, Vanathi Nachiyar G K, Ramasamy V. Synthesis and Characterization of Cu²⁺ Doped ZnS Nanoparticles Using TOPO and SHMP as Capping Agents [J]. Applied Surface Science, 2011, 257(15): 6779–6786.
- [10] Costa P M F J, Cachim P B, Gautam U K, et al. Mechanics of Turbostratic Carbon Nanotubes Filled with Ga-Doped ZnS[J]. Materials Science Forum, 2010, 636 (37): 665-670.
- [11] Prathap P, Revathi N, Subbaiah Y P V, et al. Preparation and Characterzation of Transparent Conducting ZnS: Al Films[J]. Solid State Sciences, 2009, 11(1): 224–232.
- [12] Liu Yanmei, Fang Qingqing, Wu Mingzai, et al. Structure and Photoluminescence of Arrayed Zn_{1-x}Co_xO Nanorods Grown via Hydrothermal Method[J]. Journal of Physics D: Applied Physics, 2007, 40(15): 4592-4599.
- [13] Cullity B D, Stock S R. Elements of X-Ray Diffractiong[M]. Boston: Addison-Wwsley, 1956: 99–100.
- [14] Chakdar D, Gope G, Kakati J, et al. Green Luminescence of ZnS and ZnS: Cu Quantum Dots Embedded in Zeolite Matrix[J]. Journal of Applied Physics, 2009, 105(9): 4350-4309.
- [15] Sambasivam S, Paul Joseph D, Venkateswaran C. Doping Induced Magnetism in Co-ZnS Nanoparticles[J]. Journal of Solid State Chemistry, 2009, 182(10): 2598–2601.
- [16] Tsai T Y, Birnbaum Milton. Characteristics of Co^{2^+} : ZnS Saturable Absorber Q-Switched Neodymium Lasers at 1.3 μ m[J]. Journal of Applied Physics, 2001, 89(4) : 2006–2012.
- [17] Klausch Andrea, Althues Holger, Schrage Christian.
 Preparation of Luminescent ZnS: Cu Nanoparticles for the Functionalization of Transparent Acrylate Polymers[J].
 Journal of Luminescence, 2010, 130(4): 692–697.